Singular Limit and Homogenization for Flame Propagation in Periodic Excitable Media

被引:0
|
作者
Luis A. Caffarelli
Ki-Ahm Lee
Antoine Mellet
机构
[1] University of Texas at Austin,Department of Mathematics
[2] Seoul National University,Laboratoire Mathématiques pour l’Industrie et la Physique
[3] Université P. Sabatier,undefined
关键词
Combustion; Activation Energy; Free Boundary; Boundary Problem; Excitable Medium;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with a class of singular equations modelling the combustion of premixed gases in periodic media. The model involves two parameters: the period of the medium |L| and a singular parameter ɛ related to the activation energy. The existence of pulsating travelling fronts for fixed ɛ and |L| was proved by Berestycki & Hamel in [BH]. In the present paper, we investigate the behaviour of such solutions when [inline-graphic not available: see fulltext] More precisely, we establish that pulsating travelling fronts behave like travelling waves, when the period |L| is small and [inline-graphic not available: see fulltext]. We also study the convergence of the solution, as ɛ goes to zero (and |L| is fixed), toward a solution of a free boundary problem.
引用
收藏
页码:153 / 190
页数:37
相关论文
共 50 条
  • [31] Singular homogenization with stationary in time and periodic in space coefficients
    Diop, MA
    Iftimie, B
    Pardoux, E
    Piatnitski, AL
    JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 231 (01) : 1 - 46
  • [32] FLAME PROPAGATION THROUGH PERIODIC VORTICES
    DOLD, JW
    KERR, OS
    NIKOLOVA, IP
    COMBUSTION AND FLAME, 1995, 100 (03) : 359 - 366
  • [33] Spontaneously periodic wave generation in coupled excitable media
    Zhang, Lei
    Zhang, Shengli
    Tong, Huimin
    Lei, Dongsheng
    Hu, Bambi
    PHYSICAL REVIEW E, 2009, 79 (05):
  • [34] Periodic rotating waves in an undulating annulus and their homogenization limit
    Lou, Bendong
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 38 (03) : 693 - 716
  • [35] Dynamic homogenization in periodic fibre reinforced media. Quasi-static limit for SH waves
    Parnell, W. J.
    Abrahams, I. D.
    WAVE MOTION, 2006, 43 (06) : 474 - 498
  • [36] Synaptically generated wave propagation in excitable neural media
    Bressloff, PC
    PHYSICAL REVIEW LETTERS, 1999, 82 (14) : 2979 - 2982
  • [37] MESOSCOPIC MODELING OF WAVE-PROPAGATION IN EXCITABLE MEDIA
    ITO, H
    PHYSICA D, 1994, 79 (01): : 16 - 40
  • [38] Effects of a quenched disorder on wave propagation in excitable media
    Sendiña-Nadal, I
    Pérez-Muñuzuri, V
    Gómez-Gesteira, M
    Muñuzuri, AP
    Pérez-Villar, V
    Vives, D
    Sagués, F
    Casademunt, J
    Sancho, JM
    Ramírez-Piscina, L
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (12): : 2353 - 2361
  • [39] Homogenization for periodic media: from microscale to macroscale
    G. P. Panasenko
    Physics of Atomic Nuclei, 2008, 71 : 681 - 694
  • [40] A generalized theory of elastodynamic homogenization for periodic media
    Nassar, H.
    He, Q. -C.
    Auffray, N.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2016, 84 : 139 - 146