Kernels and ranks of cyclic and negacyclic quaternary codes

被引:0
|
作者
Steven T. Dougherty
Cristina Fernández-Córdoba
机构
[1] University of Scranton,Department of Mathematics
[2] Universitat Autònoma de Barcelona,Department of Information and Communications Engineering
来源
关键词
Cyclic codes; Quaternary codes; Rank; Kernel; 94B15; 11T71;
D O I
暂无
中图分类号
学科分类号
摘要
We study the rank and kernel of Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_4$$\end{document} cyclic codes of odd length n and give bounds on the size of the kernel and the rank. Given that a cyclic code of odd length is of the form C=⟨fh,2fg⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal { C}= \langle fh, 2fg \rangle $$\end{document}, where fgh=xn-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$fgh=x^n-1$$\end{document}, we show that ⟨2f⟩⊆K(C)⊆C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle 2f \rangle \subseteq \mathcal { K}(\mathcal { C}) \subseteq \mathcal { C}$$\end{document} and C⊆R(C)⊆⟨fh,2g⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal { C}\subseteq \mathcal { R}(\mathcal { C}) \subseteq \langle fh, 2g \rangle $$\end{document} where K(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal { K}(\mathcal { C}) $$\end{document} is the preimage of the binary kernel and R(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal { R}(\mathcal { C})$$\end{document} is the preimage of the space generated by the image of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal { C}$$\end{document}. Additionally, we show that both K(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal { K}(\mathcal { C})$$\end{document} and R(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal { R}(\mathcal { C})$$\end{document} are cyclic codes and determine K(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal { K}(\mathcal { C})$$\end{document} and R(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal { R}(\mathcal { C})$$\end{document} in numerous cases. We conclude by using these results to determine the case for negacyclic codes as well.
引用
收藏
页码:347 / 364
页数:17
相关论文
共 50 条
  • [41] New EAQMDS codes constructed from negacyclic codes
    Wan Jiang
    Shixin Zhu
    Xiaojing Chen
    Quantum Information Processing, 2020, 19
  • [42] New EAQMDS codes constructed from negacyclic codes
    Jiang, Wan
    Zhu, Shixin
    Chen, Xiaojing
    QUANTUM INFORMATION PROCESSING, 2020, 19 (12)
  • [43] Quantum MDS and Synchronizable Codes From Cyclic and Negacyclic Codes of Length 2ps Over Fpm
    Dinh, Hai Q.
    Nguyen, Bac T.
    Yamaka, Woraphon
    IEEE ACCESS, 2020, 8 : 124608 - 124623
  • [44] A NOTE ON NEGACYCLIC AND CYCLIC CODES OF LENGTH ps OVER A FINITE FIELD OF CHARACTERISTIC p
    Ozadam, Hakan
    Ozbudak, Ferruh
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2009, 3 (03) : 265 - 271
  • [45] New Quantum MDS Codes From Negacyclic Codes
    Kai, Xiaoshan
    Zhu, Shixin
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (02) : 1193 - 1197
  • [46] QUANTUM SUBSYSTEM CODES DRIVED FROM NEGACYCLIC CODES
    Chen, Jianzhang
    Li, Jianping
    Lin, Jie
    Huang, Yuanyuan
    2014 11TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2014, : 114 - 118
  • [47] Construction of quantum negacyclic BCH codes
    Kai, Xiaoshan
    Li, Ping
    Zhu, Shixin
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2018, 16 (07)
  • [48] The densities for 3-ranks of tame kernels of cyclic cubic number fields
    Cheng XiaoYun
    Guo XueJun
    Qin HouRong
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (01) : 43 - 47
  • [49] Two families of negacyclic BCH codes
    Wang, Xiaoqiang
    Sun, Zhonghua
    Ding, Cunsheng
    DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (07) : 2395 - 2420
  • [50] The densities for 3-ranks of tame kernels of cyclic cubic number fields
    CHENG XiaoYun
    GUO XueJun
    QIN HouRong
    ScienceChina(Mathematics), 2014, 57 (01) : 43 - 47