Kernels and ranks of cyclic and negacyclic quaternary codes

被引:0
|
作者
Steven T. Dougherty
Cristina Fernández-Córdoba
机构
[1] University of Scranton,Department of Mathematics
[2] Universitat Autònoma de Barcelona,Department of Information and Communications Engineering
来源
关键词
Cyclic codes; Quaternary codes; Rank; Kernel; 94B15; 11T71;
D O I
暂无
中图分类号
学科分类号
摘要
We study the rank and kernel of Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_4$$\end{document} cyclic codes of odd length n and give bounds on the size of the kernel and the rank. Given that a cyclic code of odd length is of the form C=⟨fh,2fg⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal { C}= \langle fh, 2fg \rangle $$\end{document}, where fgh=xn-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$fgh=x^n-1$$\end{document}, we show that ⟨2f⟩⊆K(C)⊆C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle 2f \rangle \subseteq \mathcal { K}(\mathcal { C}) \subseteq \mathcal { C}$$\end{document} and C⊆R(C)⊆⟨fh,2g⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal { C}\subseteq \mathcal { R}(\mathcal { C}) \subseteq \langle fh, 2g \rangle $$\end{document} where K(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal { K}(\mathcal { C}) $$\end{document} is the preimage of the binary kernel and R(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal { R}(\mathcal { C})$$\end{document} is the preimage of the space generated by the image of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal { C}$$\end{document}. Additionally, we show that both K(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal { K}(\mathcal { C})$$\end{document} and R(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal { R}(\mathcal { C})$$\end{document} are cyclic codes and determine K(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal { K}(\mathcal { C})$$\end{document} and R(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal { R}(\mathcal { C})$$\end{document} in numerous cases. We conclude by using these results to determine the case for negacyclic codes as well.
引用
收藏
页码:347 / 364
页数:17
相关论文
共 50 条
  • [31] Some negacyclic BCH codes and quantum codes
    Wang, Junli
    Li, Ruihu
    Liu, Yang
    Guo, Guanmin
    QUANTUM INFORMATION PROCESSING, 2020, 19 (02)
  • [32] Cyclic and negacyclic codes of length 4ps over Fpm + uFpm
    Dinh, Hai Q.
    Sharma, Anuradha
    Rani, Saroj
    Sriboonchitta, Songsak
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2018, 17 (09)
  • [33] Quantum Codes Derived from Negacyclic Codes
    Gao, Jian
    Wang, Yongkang
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2018, 57 (03) : 682 - 686
  • [34] Quantum Codes Derived from Negacyclic Codes
    Jian Gao
    Yongkang Wang
    International Journal of Theoretical Physics, 2018, 57 : 682 - 686
  • [35] The 3-ranks of tame kernels of cubic cyclic number fields
    Guo, Xuejun
    ACTA ARITHMETICA, 2007, 129 (04) : 389 - 395
  • [36] Self-dual Repeated Root Cyclic and Negacyclic Codes over Finite Fields
    Guenda, K.
    Gulliver, T. A.
    2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2012,
  • [37] On MDS Negacyclic LCD Codes
    Koroglu, Mehmet E.
    Sari, Mustafa
    FILOMAT, 2019, 33 (01) : 1 - 12
  • [38] Cyclic and negacyclic codes over the Galois ring GR(p2, m)
    Sobhani, R.
    Esmaeili, M.
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (13) : 2892 - 2903
  • [39] Explicit constructions of cyclic and negacyclic codes of length 3ps over Fpm
    Phuto, Jirayu
    Klin-Eam, Chakkrid
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2020, 12 (05)
  • [40] Quantum MDS and synchronizable codes from cyclic and negacyclic codes of length 4ps over Fpm
    Dinh, Hai Q.
    Le, Ha T.
    Nguyen, Bac T.
    Tansuchat, Roengchai
    QUANTUM INFORMATION PROCESSING, 2021, 20 (11)