Kernels and ranks of cyclic and negacyclic quaternary codes

被引:0
|
作者
Steven T. Dougherty
Cristina Fernández-Córdoba
机构
[1] University of Scranton,Department of Mathematics
[2] Universitat Autònoma de Barcelona,Department of Information and Communications Engineering
来源
关键词
Cyclic codes; Quaternary codes; Rank; Kernel; 94B15; 11T71;
D O I
暂无
中图分类号
学科分类号
摘要
We study the rank and kernel of Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_4$$\end{document} cyclic codes of odd length n and give bounds on the size of the kernel and the rank. Given that a cyclic code of odd length is of the form C=⟨fh,2fg⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal { C}= \langle fh, 2fg \rangle $$\end{document}, where fgh=xn-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$fgh=x^n-1$$\end{document}, we show that ⟨2f⟩⊆K(C)⊆C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle 2f \rangle \subseteq \mathcal { K}(\mathcal { C}) \subseteq \mathcal { C}$$\end{document} and C⊆R(C)⊆⟨fh,2g⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal { C}\subseteq \mathcal { R}(\mathcal { C}) \subseteq \langle fh, 2g \rangle $$\end{document} where K(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal { K}(\mathcal { C}) $$\end{document} is the preimage of the binary kernel and R(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal { R}(\mathcal { C})$$\end{document} is the preimage of the space generated by the image of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal { C}$$\end{document}. Additionally, we show that both K(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal { K}(\mathcal { C})$$\end{document} and R(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal { R}(\mathcal { C})$$\end{document} are cyclic codes and determine K(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal { K}(\mathcal { C})$$\end{document} and R(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal { R}(\mathcal { C})$$\end{document} in numerous cases. We conclude by using these results to determine the case for negacyclic codes as well.
引用
收藏
页码:347 / 364
页数:17
相关论文
共 50 条
  • [1] Kernels and ranks of cyclic and negacyclic quaternary codes
    Dougherty, Steven T.
    Fernandez-Cordoba, Cristina
    DESIGNS CODES AND CRYPTOGRAPHY, 2016, 81 (02) : 347 - 364
  • [2] THE RANKS OF CYCLIC AND NEGACYCLIC CODES OVER THE FINITE RING R
    Zhu Shixin* Shi Minjia* ** *(Department of Applied Mathematics
    JournalofElectronics(China), 2008, (01) : 97 - 101
  • [3] QUATERNARY GROUP RING CODES: RANKS, KERNELS AND SELF-DUAL CODES
    Dougherty, Steven T.
    Fernandez-Cordoba, Cristina
    Ten-Valls, Roger
    Yildiz, Bahattin
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2020, 14 (02) : 319 - 332
  • [4] On the Ranks and Kernels Problem for Perfect Codes
    S. V. Avgustinovich
    F. I. Solov'eva
    O. Heden
    Problems of Information Transmission, 2003, 39 (4) : 341 - 345
  • [5] Entanglement-assisted quantum codes from cyclic codes and negacyclic codes
    Junli Wang
    Ruihu Li
    Jingjie Lv
    Hao Song
    Quantum Information Processing, 2020, 19
  • [6] Hulls of cyclic and negacyclic codes over finite fields
    Sangwisut, Ekkasit
    Jitman, Somphong
    Ling, San
    Udomkavanich, Patanee
    FINITE FIELDS AND THEIR APPLICATIONS, 2015, 33 : 232 - 257
  • [7] Entanglement-assisted quantum codes from cyclic codes and negacyclic codes
    Wang, Junli
    Li, Ruihu
    Lv, Jingjie
    Song, Hao
    QUANTUM INFORMATION PROCESSING, 2020, 19 (05)
  • [8] Cyclic and negacyclic codes over finite chain rings
    Dinh, HQ
    López-Permouth, SR
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (08) : 1728 - 1744
  • [9] Negacyclic and cyclic codes over Z4
    Wolfmann, J
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (07) : 2527 - 2532
  • [10] Ranks and Kernels of Codes From Generalized Hadamard Matrices
    Dougherty, Steven T.
    Rifa, Josep
    Villanueva, Merce
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (02) : 687 - 694