A Flexible Algorithm for Generating All the Spanning Trees in Undirected Graphs

被引:0
|
作者
T. Matsui
机构
[1] Department of Mathematical Engineering and Information Physics,
[2] Faculty of Engineering,undefined
[3] University of Tokyo,undefined
[4] Bunkyo-ku,undefined
[5] Tokyo 113,undefined
[6] Japan. tomomi@misojiro.t.u-tokyo.ac.jp.,undefined
来源
Algorithmica | 1997年 / 18卷
关键词
Key words. Enumeration problem, Spanning tree.;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we propose an algorithm for generating all the spanning trees in undirected graphs. The algorithm requires O (n+m+ τ n) time where the given graph has n vertices, m edges, and τ spanning trees. For outputting all the spanning trees explicitly, this time complexity is optimal.
引用
收藏
页码:530 / 543
页数:13
相关论文
共 50 条
  • [31] ALGORITHM FOR FINDING THE COMMON SPANNING-TREES OF 2 GRAPHS
    GRIMBLEBY, JB
    [J]. ELECTRONICS LETTERS, 1981, 17 (13) : 470 - 471
  • [32] GENERATING FUNCTION FOR SPANNING TREES
    MYERS, BR
    [J]. ELECTRONICS LETTERS, 1973, 9 (16) : 360 - 361
  • [33] FINDING ALL SPANNING TREES OF DIRECTED AND UN-DIRECTED GRAPHS
    GABOW, HN
    MYERS, EW
    [J]. SIAM JOURNAL ON COMPUTING, 1978, 7 (03) : 280 - 287
  • [34] Factorizations of Complete Graphs into Spanning Trees with All Possible Maximum Degrees
    Kovar, Petr
    Kubesa, Michael
    [J]. COMBINATORIAL ALGORITHMS, 2009, 5874 : 334 - 344
  • [35] Listing all spanning trees in Halin graphs - sequential and Parallel view
    Reddy, K. Krishna Mohan
    Renjith, P.
    Sadagopan, N.
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2018, 10 (01)
  • [36] Spanning Distribution Trees of Graphs
    Kawabata, Masaki
    Nishizeki, Takao
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2014, E97D (03): : 406 - 412
  • [37] Spanning trees in dense graphs
    Komlós, J
    Sárközy, GN
    Szemerédi, E
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2001, 10 (05): : 397 - 416
  • [38] Spanning even trees of graphs
    Jackson, Bill
    Yoshimoto, Kiyoshi
    [J]. JOURNAL OF GRAPH THEORY, 2024, 107 (01) : 95 - 106
  • [39] Spanning trees in subcubic graphs
    Li, Rui
    Cui, Qing
    [J]. ARS COMBINATORIA, 2014, 117 : 411 - 415
  • [40] On the Number of Spanning Trees of Graphs
    Bozkurt, S. Burcu
    Bozkurt, Durmus
    [J]. SCIENTIFIC WORLD JOURNAL, 2014,