Spanning trees in subcubic graphs

被引:0
|
作者
Li, Rui [1 ]
Cui, Qing [2 ]
机构
[1] Hohai Univ, Coll Sci, Dept Math, Nanjing 210098, Jiangsu, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 210016, Peoples R China
关键词
Spanning tree; subcubic graphs; LEAVES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that every connected subcubic graph G has two spanning trees T-1, T-2 such that every component of G-E(T-1) is a path of length at most 3, and every component of G-E(T-2) is either a path of length at most 2 or a cycle.
引用
收藏
页码:411 / 415
页数:5
相关论文
共 50 条
  • [1] Spanning Distribution Trees of Graphs
    Kawabata, Masaki
    Nishizeki, Takao
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2014, E97D (03): : 406 - 412
  • [2] Spanning trees in dense graphs
    Komlós, J
    Sárközy, GN
    Szemerédi, E
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2001, 10 (05): : 397 - 416
  • [3] Spanning even trees of graphs
    Jackson, Bill
    Yoshimoto, Kiyoshi
    [J]. JOURNAL OF GRAPH THEORY, 2024, 107 (01) : 95 - 106
  • [4] On the Number of Spanning Trees of Graphs
    Bozkurt, S. Burcu
    Bozkurt, Durmus
    [J]. SCIENTIFIC WORLD JOURNAL, 2014,
  • [5] Spanning trees in hyperbolic graphs
    Matthias Hamann
    [J]. Combinatorica, 2016, 36 : 313 - 332
  • [6] Spanning trees in random graphs
    Montgomery, Richard
    [J]. ADVANCES IN MATHEMATICS, 2019, 356
  • [7] Spanning trees and orientations of graphs
    Thomassen, Carsten
    [J]. JOURNAL OF COMBINATORICS, 2010, 1 (02) : 101 - 111
  • [8] Spanning trees in hyperbolic graphs
    Hamann, Matthias
    [J]. COMBINATORICA, 2016, 36 (03) : 313 - 332
  • [9] End-faithful spanning trees in graphs without normal spanning trees
    Buerger, Carl
    Kurkofka, Jan
    [J]. JOURNAL OF GRAPH THEORY, 2022, 101 (01) : 95 - 105
  • [10] Random Selection of Spanning Trees on Graphs
    Luis Perez-Perez, Sergio
    Benito Morales-Luna, Guillermo
    Davino Sagols-Troncoso, Feliu
    [J]. COMPUTACION Y SISTEMAS, 2012, 16 (04): : 457 - 469