Existence and uniqueness of strong solutions for a class of compressible non-Newtonian fluids with singularity

被引:0
|
作者
Wucai Yang
Qiu Meng
Yuanyuan Zhao
机构
[1] Beihua University,School of Mathematics and Statistics
来源
Ricerche di Matematica | 2023年 / 72卷
关键词
Singularity; Vacuum; Newtonian potential; Existence and uniqueness;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the purpose is to discuss the existence and uniqueness of local solutions for a class of singular compressible non-Newtonian flows in one-dimensional bounded interval. The first difficulty is that the equation itself is singular and the initial condition is allowed to be vacuumed. The other is that the viscosity term and Newtonian potential term are completely nonlinear.
引用
收藏
页码:423 / 442
页数:19
相关论文
共 50 条
  • [41] Global existence of strong solutions of Navier-Stokes equations with non-Newtonian potential for one-dimensional isentropic compressible fluids
    Liu Hongzhi
    Yuan Hongjun
    Qiao Jiezeng
    Li Fanpei
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) : 5876 - 5891
  • [42] GLOBAL EXISTENCE OF STRONG SOLUTIONS OF NAVIER-STOKES EQUATIONS WITH NON-NEWTONIAN POTENTIAL FOR ONE-DIMENSIONAL ISENTROPIC COMPRESSIBLE FLUIDS
    Yuan Hongjun
    Liu Hongzhi
    Qiao Jiezeng
    Li Fanpei
    [J]. ACTA MATHEMATICA SCIENTIA, 2012, 32 (04) : 1467 - 1486
  • [43] GLOBAL EXISTENCE OF STRONG SOLUTIONS OF NAVIER-STOKES EQUATIONS WITH NON-NEWTONIAN POTENTIAL FOR ONE-DIMENSIONAL ISENTROPIC COMPRESSIBLE FLUIDS
    袁洪君
    柳洪志
    桥节增
    李梵蓓
    [J]. Acta Mathematica Scientia, 2012, 32 (04) : 1467 - 1486
  • [44] Global existence of strong solutions of Navier-Stokes equations with non-Newtonian potential for one-dimensional isentropic compressible fluids
    Liu, Hongzhi
    Yuan, Hongjun
    Qiao, Jiezeng
    Li, Fanpei
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (05): : 865 - 878
  • [45] Global Existence of Strong Solutions to the Cauchy Problem for a One-Dimensional Compressible Non-Newtonian Fluid
    Li Fang
    Aibin Zang
    [J]. Journal of Mathematical Fluid Mechanics, 2023, 25
  • [46] Global Existence of Strong Solutions to the Cauchy Problem for a One-Dimensional Compressible Non-Newtonian Fluid
    Fang, Li
    Zang, Aibin
    [J]. JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2023, 25 (01)
  • [47] Regularization of a non-Newtonian system in an unbounded channel: Existence and uniqueness of solutions
    Bloom, F
    Hao, WG
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 44 (03) : 281 - 309
  • [48] Bipolar barotropic non-Newtonian compressible fluids
    Matusu-Necasová, S
    Medvidová-Lukácová, M
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (05): : 923 - 934
  • [49] Global existence and time behaviour of strong solution to a compressible non-Newtonian fluid
    Fang, Li
    Wang, Yu
    Xu, Shiwei
    Guo, Zhenhua
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 72
  • [50] NOTE ON THE PROBLEM OF COMPRESSIBLE NON-NEWTONIAN FLUIDS
    Caggio, M.
    Necasova, S.
    [J]. CONFERENCE TOPICAL PROBLEMS OF FLUID MECHANICS 2019: PROCEEDINGS, 2019, : 31 - 36