Global existence of strong solutions of Navier-Stokes equations with non-Newtonian potential for one-dimensional isentropic compressible fluids

被引:7
|
作者
Liu, Hongzhi [1 ,2 ]
Yuan, Hongjun [1 ]
Qiao, Jiezeng [2 ]
Li, Fanpei [2 ]
机构
[1] Jilin Univ, Inst Math, Changchun 130012, Jilin, Peoples R China
[2] Inner Mongolia Finance & Econ Coll, Hohhot 010051, Peoples R China
来源
关键词
Navier-Stokes equations; Isentropic compressible fluids; Global strong solutions; Vacuum; Non-Newtonian potential; POISSON EQUATIONS; SYSTEM; BEHAVIOR;
D O I
10.1007/s00033-012-0202-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider strong solutions to the initial boundary value problems for the isentropic compressible Navier-Stokes equations in one dimension: rho{t + (rho u)(x) = 0 in (0, T) x (0, 1) (rho u)(t) + (rho u(2))(x) + rho Phi(x) - (mu(rho)u(x))(x) + P-x = 0 in (0, T) x (0, 1) ((delta(Phi(x))(2) + 1/Phi(x))(2) + delta)(2-p/2) Phi(x))(x) = 4 pi g(rho - 1/vertical bar Omega vertical bar integral(Omega) rho dx) in (0, T) x (0, 1) Here, the Phi is a non-Newtonian potential and strong solutions of the problem and obtains the uniqueness under the compatibility condition.
引用
收藏
页码:865 / 878
页数:14
相关论文
共 50 条