On Functional Separately Convex Hulls

被引:0
|
作者
J. Matoušek
P. Plecháč
机构
[1] Department of Applied Mathematics,
[2] Charles University,undefined
[3] Malostranské nám. 25,undefined
[4] 118 00 Praha 1,undefined
[5] Czech Republic matousek@kam.mff.cuni.cz,undefined
[6] Department of Mathematics,undefined
[7] Heriot—Watt University,undefined
[8] Edinburgh EH14 4AS,undefined
[9] Scotland petr@ma.hw.ac.uk ,undefined
来源
关键词
Differential Equation; Mathematical Modeling; Partial Differential Equation; Convex Function; Convex Hull;
D O I
暂无
中图分类号
学科分类号
摘要
Let D be a set of vectors in Rd . A function f:Rd→R is called D-convex if its restriction to each line parallel to a nonzero vector of D is a convex function. For a set A⊆Rd , the functional D-convex hull of A, denoted by coD(A) , is the intersection of the zero sets of all nonnegative D -convex functions that are 0 on A .
引用
收藏
页码:105 / 130
页数:25
相关论文
共 50 条
  • [31] Convex hulls in the hyperbolic space
    Itai Benjamini
    Ronen Eldan
    Geometriae Dedicata, 2012, 160 : 365 - 371
  • [32] Convex Hulls Under Uncertainty
    Pankaj K. Agarwal
    Sariel Har-Peled
    Subhash Suri
    Hakan Yıldız
    Wuzhou Zhang
    Algorithmica, 2017, 79 : 340 - 367
  • [33] POLYNOMIALLY CONVEX HULLS AND ANALYTICITY
    WERMER, J
    ARKIV FOR MATEMATIK, 1982, 20 (01): : 129 - 135
  • [34] On Disjunction Convex Hulls by Lifting
    Qu, Yushan
    Lee, Jon
    COMBINATORIAL OPTIMIZATION, ISCO 2024, 2024, 14594 : 3 - 15
  • [35] Szlenk indices of convex hulls
    Lancien, G.
    Prochazka, A.
    Raja, M.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (02) : 498 - 521
  • [36] CONVEX HULLS OF SIERPINSKI RELATIVES
    Taylor, T. D.
    Rowley, S.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2018, 26 (06)
  • [37] CONVEX HULLS AND THE LEGENDRE TRANSFORM
    SEDYKH, VD
    SIBERIAN MATHEMATICAL JOURNAL, 1983, 24 (06) : 923 - 933
  • [38] CONVEX HULLS FOR RANDOM LINES
    DEVROYE, L
    TOUSSAINT, G
    JOURNAL OF ALGORITHMS, 1993, 14 (03) : 381 - 394
  • [39] Metric entropy of convex hulls
    Fuchang Gao
    Israel Journal of Mathematics, 2001, 123 : 359 - 364
  • [40] Convex Hulls Under Uncertainty
    Agarwal, Pankaj K.
    Har-Peled, Sariel
    Suri, Subhash
    Yildiz, Hakan
    Zhang, Wuzhou
    ALGORITHMICA, 2017, 79 (02) : 340 - 367