Convex Hulls Under Uncertainty

被引:0
|
作者
Pankaj K. Agarwal
Sariel Har-Peled
Subhash Suri
Hakan Yıldız
Wuzhou Zhang
机构
[1] Duke University,
[2] University of Illinois at Urbana-Champaign,undefined
[3] University of California,undefined
[4] Santa Barbara,undefined
[5] Microsoft Corporation,undefined
[6] Apple Inc.,undefined
来源
Algorithmica | 2017年 / 79卷
关键词
Convex hull; Membership probability; Tukey depth; Uncertainty;
D O I
暂无
中图分类号
学科分类号
摘要
We study the convex-hull problem in a probabilistic setting, motivated by the need to handle data uncertainty inherent in many applications, including sensor databases, location-based services and computer vision. In our framework, the uncertainty of each input point is described by a probability distribution over a finite number of possible locations including a null location to account for non-existence of the point. Our results include both exact and approximation algorithms for computing the probability of a query point lying inside the convex hull of the input, time–space tradeoffs for the membership queries, a connection between Tukey depth and membership queries, as well as a new notion of β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-hull that may be a useful representation of uncertain hulls.
引用
收藏
页码:340 / 367
页数:27
相关论文
共 50 条
  • [1] Convex Hulls Under Uncertainty
    Agarwal, Pankaj K.
    Har-Peled, Sariel
    Suri, Subhash
    Yildiz, Hakan
    Zhang, Wuzhou
    [J]. ALGORITHMICA, 2017, 79 (02) : 340 - 367
  • [2] Convex Hulls under Uncertainty
    Agarwal, Pankaj K.
    Har-Peled, Sariel
    Suri, Subhash
    Yildiz, Hakan
    Zhang, Wuzhou
    [J]. ALGORITHMS - ESA 2014, 2014, 8737 : 37 - 48
  • [3] Convex hulls of spheres and convex hulls of disjoint convex polytopes
    Karavelas, Menelaos I.
    Seidel, Raimund
    Tzanaki, Eleni
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2013, 46 (06): : 615 - 630
  • [4] ON CONVEX HULLS
    SCHAEFER, HH
    [J]. ARCHIV DER MATHEMATIK, 1992, 58 (02) : 160 - 163
  • [5] Convex Hulls of Spheres and Convex Hulls of Convex Polytopes Lying on Parallel Hyperplanes
    Karavelas, Menelaos I.
    Tzanaki, Eleni
    [J]. COMPUTATIONAL GEOMETRY (SCG 11), 2011, : 397 - 406
  • [6] Comparison of convex hulls and box hulls
    Boros, E
    Gurvich, V
    Liu, Y
    [J]. ARS COMBINATORIA, 2005, 77 : 193 - 204
  • [7] SINGULARITIES OF CONVEX HULLS
    SEDYKH, VD
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 1983, 24 (03) : 447 - 461
  • [8] A THEOREM ON CONVEX HULLS
    HORN, WA
    [J]. JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION B-MATHEMATICAL SCIENCES, 1969, B 73 (04): : 307 - +
  • [9] ON CONVEX HULLS OF TRANSLATES
    GLICKSBERG, I
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1963, 13 (01) : 97 - &
  • [10] THE GENERATION OF CONVEX HULLS
    BONNICE, W
    KLEE, VL
    [J]. MATHEMATISCHE ANNALEN, 1963, 152 (01) : 1 - 29