Convex Hulls Under Uncertainty

被引:0
|
作者
Pankaj K. Agarwal
Sariel Har-Peled
Subhash Suri
Hakan Yıldız
Wuzhou Zhang
机构
[1] Duke University,
[2] University of Illinois at Urbana-Champaign,undefined
[3] University of California,undefined
[4] Santa Barbara,undefined
[5] Microsoft Corporation,undefined
[6] Apple Inc.,undefined
来源
Algorithmica | 2017年 / 79卷
关键词
Convex hull; Membership probability; Tukey depth; Uncertainty;
D O I
暂无
中图分类号
学科分类号
摘要
We study the convex-hull problem in a probabilistic setting, motivated by the need to handle data uncertainty inherent in many applications, including sensor databases, location-based services and computer vision. In our framework, the uncertainty of each input point is described by a probability distribution over a finite number of possible locations including a null location to account for non-existence of the point. Our results include both exact and approximation algorithms for computing the probability of a query point lying inside the convex hull of the input, time–space tradeoffs for the membership queries, a connection between Tukey depth and membership queries, as well as a new notion of β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-hull that may be a useful representation of uncertain hulls.
引用
下载
收藏
页码:340 / 367
页数:27
相关论文
共 50 条
  • [41] Szlenk indices of convex hulls
    Lancien, G.
    Prochazka, A.
    Raja, M.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (02) : 498 - 521
  • [42] CONVEX HULLS FOR RANDOM LINES
    DEVROYE, L
    TOUSSAINT, G
    JOURNAL OF ALGORITHMS, 1993, 14 (03) : 381 - 394
  • [43] Metric entropy of convex hulls
    Fuchang Gao
    Israel Journal of Mathematics, 2001, 123 : 359 - 364
  • [44] Nonclassical Probability and Convex Hulls
    Bradley, Seamus
    ERKENNTNIS, 2017, 82 (01) : 87 - 101
  • [45] On Convex Hulls of Epigraphs of QCQPs
    Wang, Alex L.
    Kilinc-Karzan, Fatma
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2020, 2020, 12125 : 419 - 432
  • [46] STABILIZATION OF SINGULARITIES OF CONVEX HULLS
    SEDYKH, VD
    MATHEMATICS OF THE USSR-SBORNIK, 1988, 135 (3-4): : 499 - 505
  • [47] Convex hulls of Coxeter groups
    Brandman, J
    Fowler, J
    Lins, B
    Spitkovsky, I
    Zobin, N
    FUNCTION SPACES, INTERPOLATION THEORY AND RELATED TOPICS, PROCEEDINGS, 2002, : 213 - 240
  • [48] COMPUTING CONVEX HULLS OF TRAJECTORIES
    Ciripoi, Daniel
    Kaihnsa, Nidhi
    Lohne, Andreas
    Sturmfels, Bernd
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2019, 60 (02): : 637 - 662
  • [49] Metric entropy of convex hulls
    Gao, FC
    ISRAEL JOURNAL OF MATHEMATICS, 2001, 123 (1) : 359 - 364
  • [50] ON COMPUTING APPROXIMATE CONVEX HULLS
    SOISALONSOININEN, E
    INFORMATION PROCESSING LETTERS, 1983, 16 (03) : 121 - 126