A Sharp Double Inequality for Sums of Powers

被引:0
|
作者
Vito Lampret
机构
[1] University of Ljubljana (UL),Department of Mathematics and Physics (KMF), Faculty of Civil and Geodetic Engineering (FGG)
关键词
Generate Function; Power Series; Accurate Estimate; Open Interval; Summation Formula;
D O I
暂无
中图分类号
学科分类号
摘要
It is established that the sequences [inline-graphic not available: see fulltext] and [inline-graphic not available: see fulltext] are strictly increasing and converge to [inline-graphic not available: see fulltext] and [inline-graphic not available: see fulltext], respectively. It is shown that there holds the sharp double inequality [inline-graphic not available: see fulltext].
引用
收藏
相关论文
共 50 条
  • [1] A Sharp Double Inequality for Sums of Powers
    Lampret, Vito
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011,
  • [2] A sharp double inequality for sums of powers revisited
    Lampret, Vito
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2025, 2025 (01):
  • [3] AN INEQUALITY WITH SUMS AND POWERS
    YOUNG, RL
    LOSSERS, OP
    AMERICAN MATHEMATICAL MONTHLY, 1987, 94 (01): : 77 - 78
  • [4] INEQUALITY INVOLVING POWERS OF SUMS OF POWERS
    BRUNK, HD
    MARTIN, NFG
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1978, 65 (02) : 339 - 343
  • [5] IMPROVING AN INEQUALITY FOR SUMS OF ELEMENTS OF MATRIX POWERS
    KANKAANPAA, H
    MERIKOSKI, JK
    VIRTANEN, A
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1987, 92 : 225 - 229
  • [6] A sharp trigonometric double inequality
    Kim, Yongbeom
    Lee, Tuo Yeong
    Vengat, S.
    Sim, Hui Xiang
    Tai, Jay Kin Heng
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2021, 98 (1-2): : 231 - 242
  • [7] A sharp Bernstein-type inequality for exponential sums
    Borwein, P
    Erdelyi, T
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1996, 476 : 127 - 141
  • [8] Sums of powers and powers of sums
    不详
    AMERICAN MATHEMATICAL MONTHLY, 1998, 105 (10): : 959 - 960
  • [9] Double logarithmic inequality with a sharp constant
    Ibrahim, S.
    Majdoub, M.
    Masmoudi, N.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (01) : 87 - 97
  • [10] SUMS OF POWERS OF DIGITAL SUMS
    KENNEDY, RE
    COOPER, C
    FIBONACCI QUARTERLY, 1993, 31 (04): : 341 - 345