A Sharp Double Inequality for Sums of Powers

被引:0
|
作者
Vito Lampret
机构
[1] University of Ljubljana (UL),Department of Mathematics and Physics (KMF), Faculty of Civil and Geodetic Engineering (FGG)
来源
Journal of Inequalities and Applications | / 2011卷
关键词
Generate Function; Power Series; Accurate Estimate; Open Interval; Summation Formula;
D O I
暂无
中图分类号
学科分类号
摘要
It is established that the sequences [inline-graphic not available: see fulltext] and [inline-graphic not available: see fulltext] are strictly increasing and converge to [inline-graphic not available: see fulltext] and [inline-graphic not available: see fulltext], respectively. It is shown that there holds the sharp double inequality [inline-graphic not available: see fulltext].
引用
收藏
相关论文
共 50 条
  • [21] SUMS OF POWERS OF DERIVATIVES
    MARIK, J
    WEIL, CE
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 112 (03) : 807 - 817
  • [22] On sums which are powers
    Gyarmati, K
    Sárközy, A
    Stewart, CL
    ACTA MATHEMATICA HUNGARICA, 2003, 99 (1-2) : 1 - 24
  • [23] On sums of seventh powers
    Choudhry, A
    JOURNAL OF NUMBER THEORY, 2000, 81 (02) : 266 - 269
  • [24] SUMS OF POWERS OF INTEGERS
    KLAMKIN, MS
    AMERICAN MATHEMATICAL MONTHLY, 1969, 76 (08): : 946 - &
  • [25] SUMS OF POWERS OF INTEGERS
    COOK, R
    JOURNAL OF NUMBER THEORY, 1979, 11 (04) : 516 - 528
  • [26] SUMS OF POWERS OF ROOTS
    CARLITZ, L
    AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (04): : 413 - 413
  • [27] Sums of powers and majorization
    Gao, Peng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 340 (02) : 1241 - 1248
  • [28] On Sums of Powers of Integers
    Shirali, Shailesh A.
    RESONANCE-JOURNAL OF SCIENCE EDUCATION, 2007, 12 (07): : 27 - 43
  • [29] SUMS OF PRIME POWERS
    PORUBSKY, S
    MONATSHEFTE FUR MATHEMATIK, 1979, 86 (04): : 301 - 303
  • [30] On sums which are powers
    K. Gyarmati
    A. Sárközy
    C. L. Stewart
    Acta Mathematica Hungarica, 2003, 99 : 1 - 24