A sharp double inequality for sums of powers revisited

被引:0
|
作者
Lampret, Vito [1 ]
机构
[1] Univ Ljubljana, Fac Civil & Geodet Engn, Ljubljana 1000, Slovenia
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2025年 / 2025卷 / 01期
关键词
Estimate; Euler's number; Inequality; Limit; Monotone sequence; Rate of convergence; Sums of powers;
D O I
10.1186/s13660-025-03253-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The proof of the monotonicity of the sequence nn Delta(n), presented in the 2011 article "A Sharp double inequality for sums of powers" by V. Lampret, is corrected. Namely, it is demonstrated that, for S(n):=Sigma k=1n(kn)n=Sigma j=0n(1-jn)n, the sequence nn(ee-1-S(n)) is strictly increasing.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A Sharp Double Inequality for Sums of Powers
    Vito Lampret
    Journal of Inequalities and Applications, 2011
  • [2] A Sharp Double Inequality for Sums of Powers
    Lampret, Vito
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011,
  • [3] AN INEQUALITY WITH SUMS AND POWERS
    YOUNG, RL
    LOSSERS, OP
    AMERICAN MATHEMATICAL MONTHLY, 1987, 94 (01): : 77 - 78
  • [4] INEQUALITY INVOLVING POWERS OF SUMS OF POWERS
    BRUNK, HD
    MARTIN, NFG
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1978, 65 (02) : 339 - 343
  • [5] The Khinchin inequality for multiple sums revisited
    Raposo, Anselmo
    Teixeira, Katiuscia B.
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2023, 30 (02) : 163 - 175
  • [6] IMPROVING AN INEQUALITY FOR SUMS OF ELEMENTS OF MATRIX POWERS
    KANKAANPAA, H
    MERIKOSKI, JK
    VIRTANEN, A
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1987, 92 : 225 - 229
  • [7] Subsets with Equal Sums of Like Powers, Revisited
    DeVincentis, Joseph
    Wagon, Stan
    Elgersma, Michael
    AMERICAN MATHEMATICAL MONTHLY, 2020, 127 (07): : 662 - 662
  • [8] A sharp trigonometric double inequality
    Kim, Yongbeom
    Lee, Tuo Yeong
    Vengat, S.
    Sim, Hui Xiang
    Tai, Jay Kin Heng
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2021, 98 (1-2): : 231 - 242
  • [9] A sharp Bernstein-type inequality for exponential sums
    Borwein, P
    Erdelyi, T
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1996, 476 : 127 - 141
  • [10] Sums of two cubes as twisted perfect powers, revisited
    Bennett, Michael A.
    Bruni, Carmen
    Freitas, Nuno
    ALGEBRA & NUMBER THEORY, 2018, 12 (04) : 959 - 999