A sharp double inequality for sums of powers revisited

被引:0
|
作者
Lampret, Vito [1 ]
机构
[1] Univ Ljubljana, Fac Civil & Geodet Engn, Ljubljana 1000, Slovenia
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2025年 / 2025卷 / 01期
关键词
Estimate; Euler's number; Inequality; Limit; Monotone sequence; Rate of convergence; Sums of powers;
D O I
10.1186/s13660-025-03253-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The proof of the monotonicity of the sequence nn Delta(n), presented in the 2011 article "A Sharp double inequality for sums of powers" by V. Lampret, is corrected. Namely, it is demonstrated that, for S(n):=Sigma k=1n(kn)n=Sigma j=0n(1-jn)n, the sequence nn(ee-1-S(n)) is strictly increasing.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Sums of Kloosterman sums revisited
    Motohashi, Y.
    CONFERENCE ON L-FUNCTIONS, 2007, : 141 - 163
  • [22] SUMS OF POWERS OF A NUMBER
    ALLWRIGHT, DJ
    AMERICAN MATHEMATICAL MONTHLY, 1980, 87 (07): : 580 - 580
  • [23] On sums of powers of integers
    Shailesh A. Shirali
    Resonance, 2007, 12 (7) : 27 - 43
  • [24] SUMS OF POWERS OF INTEGERS
    BURROWS, BL
    TALBOT, RF
    AMERICAN MATHEMATICAL MONTHLY, 1984, 91 (07): : 394 - 403
  • [25] SUMS OF POWERS OF INTEGERS
    Eba, Hunde
    MISSOURI JOURNAL OF MATHEMATICAL SCIENCES, 2019, 31 (01) : 66 - 78
  • [26] Sums of Proper Powers
    Pollack, Paul
    Trevino, Enrique
    AMERICAN MATHEMATICAL MONTHLY, 2020, 128 (01): : 40 - 40
  • [27] SUMS OF POWERS OF DERIVATIVES
    MARIK, J
    WEIL, CE
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 112 (03) : 807 - 817
  • [28] On sums which are powers
    Gyarmati, K
    Sárközy, A
    Stewart, CL
    ACTA MATHEMATICA HUNGARICA, 2003, 99 (1-2) : 1 - 24
  • [29] On sums of seventh powers
    Choudhry, A
    JOURNAL OF NUMBER THEORY, 2000, 81 (02) : 266 - 269
  • [30] SUMS OF POWERS OF INTEGERS
    KLAMKIN, MS
    AMERICAN MATHEMATICAL MONTHLY, 1969, 76 (08): : 946 - &