OrthoClust: an orthology-based network framework for clustering data across multiple species

被引:0
|
作者
Koon-Kiu Yan
Daifeng Wang
Joel Rozowsky
Henry Zheng
Chao Cheng
Mark Gerstein
机构
[1] Yale University,Program in Computational Biology and Bioinformatics
[2] Yale University,Department of Molecular Biophysics and Biochemistry
[3] Yale University,Department of Computer Science
[4] Dartmouth School of Medicine,Department of Genetics
来源
关键词
Gene Ontology; Cost Function; Orthology Relationship; Orthologous Pair; Network Alignment;
D O I
暂无
中图分类号
学科分类号
摘要
Increasingly, high-dimensional genomics data are becoming available for many organisms.Here, we develop OrthoClust for simultaneously clustering data across multiple species. OrthoClust is a computational framework that integrates the co-association networks of individual species by utilizing the orthology relationships of genes between species. It outputs optimized modules that are fundamentally cross-species, which can either be conserved or species-specific. We demonstrate the application of OrthoClust using the RNA-Seq expression profiles of Caenorhabditis elegans and Drosophila melanogaster from the modENCODE consortium. A potential application of cross-species modules is to infer putative analogous functions of uncharacterized elements like non-coding RNAs based on guilt-by-association.
引用
收藏
相关论文
共 50 条
  • [1] OrthoClust: an orthology-based network framework for clustering data across multiple species
    Yan, Koon-Kiu
    Wang, Daifeng
    Rozowsky, Joel
    Zheng, Henry
    Cheng, Chao
    Gerstein, Mark
    [J]. GENOME BIOLOGY, 2014, 15 (08): : R100
  • [2] Increasing the precision of orthology-based complex prediction through network alignment
    Pache, Roland A.
    Aloy, Patrick
    [J]. PEERJ, 2014, 2
  • [3] Exploring Approaches for Detecting Protein Functional Similarity within an Orthology-based Framework
    Christian X. Weichenberger
    Antonia Palermo
    Peter P. Pramstaller
    Francisco S. Domingues
    [J]. Scientific Reports, 7
  • [4] Exploring Approaches for Detecting Protein Functional Similarity within an Orthology-based Framework
    Weichenberger, Christian X.
    Palermo, Antonia
    Pramstaller, Peter P.
    Domingues, Francisco S.
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [5] Inference of Pathway Decomposition Across Multiple Species Through Gene Clustering
    Vitsios, Dimitrios M.
    Psomopoulos, Fotis E.
    Mitkas, Pericles A.
    Ouzounis, Christos A.
    [J]. INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2015, 24 (01)
  • [6] A Clustering-based Framework for Classifying Data Streams
    Yan, Xuyang
    Homaifar, Abdollah
    Sarkar, Mrinmoy
    Girma, Abenezer
    Tunstel, Edward
    [J]. PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 3257 - 3263
  • [7] A Feature Selection Framework Based on Supervised Data Clustering
    Liu, Hongzhi
    Fu, Bin
    Jiang, Zhengshen
    Wu, Zhonghai
    Hsu, D. Frank
    [J]. 2016 IEEE 15TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC), 2016, : 316 - 321
  • [8] Consensus framework for exploring microarray data using multiple clustering methods
    Laderas, Ted
    Mcweeney, Shannon
    [J]. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY, 2007, 11 (01) : 116 - 128
  • [9] Gene expression data clustering and visualization based on a binary hierarchical clustering framework
    Szeto, LK
    Liew, AWC
    Yan, H
    Tang, SS
    [J]. JOURNAL OF VISUAL LANGUAGES AND COMPUTING, 2003, 14 (04): : 341 - 362
  • [10] A framework for optimal clustering of a greenfield distribution network area into multiple autonomous microgrids
    Mojtahedzadeh, S.
    Ravadanegh, S. Najafi
    Haghifan, M. R.
    [J]. JOURNAL OF POWER TECHNOLOGIES, 2016, 96 (04): : 219 - 228