OrthoClust: an orthology-based network framework for clustering data across multiple species

被引:37
|
作者
Yan, Koon-Kiu [1 ,2 ]
Wang, Daifeng [1 ,2 ]
Rozowsky, Joel [1 ,2 ]
Zheng, Henry [2 ]
Cheng, Chao [4 ]
Gerstein, Mark [1 ,2 ,3 ]
机构
[1] Yale Univ, Program Computat Biol & Bioinformat, New Haven, CT 06520 USA
[2] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06520 USA
[3] Yale Univ, Dept Comp Sci, New Haven, CT 06520 USA
[4] Dartmouth Med Sch, Dept Genet, Hanover, NH 03755 USA
来源
GENOME BIOLOGY | 2014年 / 15卷 / 08期
关键词
GENE-COEXPRESSION NETWORK; NONCODING RNAS; BIOLOGICAL NETWORKS; COMMUNITY STRUCTURE; EXPRESSION; CONSERVATION; ONTOLOGY; CLASSIFICATION; TRANSCRIPTION; ANNOTATION;
D O I
10.1186/gb-2014-15-8-r100
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Increasingly, high-dimensional genomics data are becoming available for many organisms. Here, we develop OrthoClust for simultaneously clustering data across multiple species. OrthoClust is a computational framework that integrates the co-association networks of individual species by utilizing the orthology relationships of genes between species. It outputs optimized modules that are fundamentally cross-species, which can either be conserved or species-specific. We demonstrate the application of OrthoClust using the RNA-Seq expression profiles of Caenorhabditis elegans and Drosophila melanogaster from the modENCODE consortium. A potential application of cross-species modules is to infer putative analogous functions of uncharacterized elements like non-coding RNAs based on guilt-by-association.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] OrthoClust: an orthology-based network framework for clustering data across multiple species
    Koon-Kiu Yan
    Daifeng Wang
    Joel Rozowsky
    Henry Zheng
    Chao Cheng
    Mark Gerstein
    [J]. Genome Biology, 15
  • [2] Increasing the precision of orthology-based complex prediction through network alignment
    Pache, Roland A.
    Aloy, Patrick
    [J]. PEERJ, 2014, 2
  • [3] Exploring Approaches for Detecting Protein Functional Similarity within an Orthology-based Framework
    Christian X. Weichenberger
    Antonia Palermo
    Peter P. Pramstaller
    Francisco S. Domingues
    [J]. Scientific Reports, 7
  • [4] Exploring Approaches for Detecting Protein Functional Similarity within an Orthology-based Framework
    Weichenberger, Christian X.
    Palermo, Antonia
    Pramstaller, Peter P.
    Domingues, Francisco S.
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [5] Inference of Pathway Decomposition Across Multiple Species Through Gene Clustering
    Vitsios, Dimitrios M.
    Psomopoulos, Fotis E.
    Mitkas, Pericles A.
    Ouzounis, Christos A.
    [J]. INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2015, 24 (01)
  • [6] A Clustering-based Framework for Classifying Data Streams
    Yan, Xuyang
    Homaifar, Abdollah
    Sarkar, Mrinmoy
    Girma, Abenezer
    Tunstel, Edward
    [J]. PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 3257 - 3263
  • [7] A Feature Selection Framework Based on Supervised Data Clustering
    Liu, Hongzhi
    Fu, Bin
    Jiang, Zhengshen
    Wu, Zhonghai
    Hsu, D. Frank
    [J]. 2016 IEEE 15TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC), 2016, : 316 - 321
  • [8] Consensus framework for exploring microarray data using multiple clustering methods
    Laderas, Ted
    Mcweeney, Shannon
    [J]. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY, 2007, 11 (01) : 116 - 128
  • [9] Gene expression data clustering and visualization based on a binary hierarchical clustering framework
    Szeto, LK
    Liew, AWC
    Yan, H
    Tang, SS
    [J]. JOURNAL OF VISUAL LANGUAGES AND COMPUTING, 2003, 14 (04): : 341 - 362
  • [10] A framework for optimal clustering of a greenfield distribution network area into multiple autonomous microgrids
    Mojtahedzadeh, S.
    Ravadanegh, S. Najafi
    Haghifan, M. R.
    [J]. JOURNAL OF POWER TECHNOLOGIES, 2016, 96 (04): : 219 - 228