Bonnesen-style inequality for the first eigenvalue on a complete surface of constant curvature

被引:0
|
作者
Niufa Fang
Jiazu Zhou
机构
[1] Southwest University,School of Mathematics and Statistics
[2] Wuhan University of Science and Technology,College of Science
关键词
the first eigenvalue; Cheeger’s isoperimetric constants; Bonnesen-style inequality; 53A25; 53A10; 53C23;
D O I
暂无
中图分类号
学科分类号
摘要
By Cheeger’s isoperimetric constants, some lower bounds and upper bounds of λ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda_{1}$\end{document}, the first eigenvalue on a complete surface of constant curvature, are given. Some Bonnesen-style inequalities and reverse Bonnesen-style inequalities for the first eigenvalue are obtained. Those Bonnesen-style inequalities obtained are stronger than the well-known Osserman’s results and the upper bound is stronger than Osserman’s results (Osserman in Proceedings of the International Congress of Mathematicians, Helsinki, 1978).
引用
收藏
相关论文
共 34 条