Estimates for the first eigenvalue of Jacobi operator on hypersurfaces with constant mean curvature in spheres

被引:6
|
作者
Chen, Daguang [1 ]
Cheng, Qing-Ming [2 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Fukuoka Univ, Dept Appl Math, Fac Sci, Fukuoka 8140180, Japan
关键词
RIEMANNIAN-MANIFOLDS; STABILITY EIGENVALUE; SCALAR CURVATURE;
D O I
10.1007/s00526-017-1132-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the first eigenvalue of Jacobi operator on an n-dimensional non-totally umbilical compact hypersurface with constant mean curvature H in the unit sphere Sn+1(1). We give an optimal upper bound for the first eigenvalue of Jacobi operator, which only depends on the mean curvature H and the dimension n. This bound is attained if and only if, phi : M -> Sn+1(1) is isometric to S-1(r) x Sn-1(root 1 - r(2)) when H not equal 0 or phi : M -> Sn+1(1) is isometric to a Clifford torus Sn-k (root n - k/n) x S-k (root k/n), for k = 1, 2, ... , n - 1 when H = 0.
引用
收藏
页数:12
相关论文
共 50 条