Estimates for the first eigenvalue of Jacobi operator on hypersurfaces with constant mean curvature in spheres

被引:6
|
作者
Chen, Daguang [1 ]
Cheng, Qing-Ming [2 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Fukuoka Univ, Dept Appl Math, Fac Sci, Fukuoka 8140180, Japan
关键词
RIEMANNIAN-MANIFOLDS; STABILITY EIGENVALUE; SCALAR CURVATURE;
D O I
10.1007/s00526-017-1132-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the first eigenvalue of Jacobi operator on an n-dimensional non-totally umbilical compact hypersurface with constant mean curvature H in the unit sphere Sn+1(1). We give an optimal upper bound for the first eigenvalue of Jacobi operator, which only depends on the mean curvature H and the dimension n. This bound is attained if and only if, phi : M -> Sn+1(1) is isometric to S-1(r) x Sn-1(root 1 - r(2)) when H not equal 0 or phi : M -> Sn+1(1) is isometric to a Clifford torus Sn-k (root n - k/n) x S-k (root k/n), for k = 1, 2, ... , n - 1 when H = 0.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Stability index jump for constant mean curvature hypersurfaces of spheres
    Perdomo, Oscar
    Brasil, Aldir, Jr.
    ARCHIV DER MATHEMATIK, 2012, 99 (05) : 493 - 500
  • [22] Stability index jump for constant mean curvature hypersurfaces of spheres
    Oscar Perdomo
    Aldir Brasil
    Archiv der Mathematik, 2012, 99 : 493 - 500
  • [23] Scalar curvature estimates of constant mean curvature hypersurfaces in locally symmetric spaces
    de Lima, Eudes L.
    de Lima, Henrique F.
    dos Santos, Fabio R.
    Velasquez, Marco A. L.
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2019, 13 (01): : 320 - 341
  • [24] Scalar curvature estimates of constant mean curvature hypersurfaces in locally symmetric spaces
    Eudes L. de Lima
    Henrique F. de Lima
    Fábio R. dos Santos
    Marco A. L. Velásquez
    São Paulo Journal of Mathematical Sciences, 2019, 13 : 320 - 341
  • [25] COMPLETE HYPERSURFACES WITH w-CONSTANT MEAN CURVATURE IN THE UNIT SPHERES
    Cheng, Qing-Ming
    Wei, Guoxin
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 377 (02) : 887 - 904
  • [26] Volume Estimates and Classification Theorem for Constant Weighted Mean Curvature Hypersurfaces
    Ancari, Saul
    Miranda, Igor
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (04) : 3764 - 3782
  • [27] Volume Estimates and Classification Theorem for Constant Weighted Mean Curvature Hypersurfaces
    Saul Ancari
    Igor Miranda
    The Journal of Geometric Analysis, 2021, 31 : 3764 - 3782
  • [28] HYPERSURFACES WITH CONSTANT SCALAR CURVATURE AND CONSTANT MEAN-CURVATURE
    HASANIS, T
    VLACHOS, T
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 1995, 13 (01) : 69 - 77
  • [29] CHARACTERIZATION OF HYPERSURFACES VIA THE SECOND EIGENVALUE OF THE JACOBI OPERATOR
    Mendes, Abraao
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (08) : 3515 - 3521
  • [30] ON STABLE CONSTANT MEAN CURVATURE HYPERSURFACES
    Fu, Hai-Ping
    Li, Zhen-Qi
    TOHOKU MATHEMATICAL JOURNAL, 2010, 62 (03) : 383 - 392