Solving 2D Linear Isotropic Elastodynamics by Means of Scalar Potentials: A New Challenge for Finite Elements

被引:0
|
作者
Jorge Albella Martínez
Sébastien Imperiale
Patrick Joly
Jerónimo Rodríguez
机构
[1] Universidade de Santiago de Compostela,Departamento de Matemática Aplicada
[2] Inria,undefined
[3] Université Paris-Saclay,undefined
[4] LMS,undefined
[5] Ecole Polytechnique,undefined
[6] CNRS,undefined
[7] Université Paris-Saclay,undefined
[8] UMA,undefined
[9] Ensta,undefined
[10] CNRS,undefined
[11] Université Paris-Saclay,undefined
[12] IMAT,undefined
[13] Universidade de Santiago de Compostela,undefined
[14] ITMATI,undefined
[15] Campus Sur,undefined
来源
关键词
Elastic wave propagation; Helmholtz decomposition; Potentials; Stability of the evolution problem;
D O I
暂无
中图分类号
学科分类号
摘要
In this work we present a method for the computation of numerical solutions of 2D homogeneous isotropic elastodynamics equations by solving scalar wave equations. These equations act on the potentials of a Helmholtz decomposition of the displacement field and are decoupled inside the propagation domain. We detail how these equations are coupled at the boundary depending on the nature of the boundary condition satisfied by the displacement field. After presenting the case of rigid boundary conditions, that presents no specific difficulty, we tackle the challenging case of free surface boundary conditions that presents severe stability issues if a straightforward approach is used. We introduce an adequate functional framework as well as a time domain mixed formulation to circumvent these issues. Numerical results confirm the stability of the proposed approach.
引用
收藏
页码:1832 / 1873
页数:41
相关论文
共 50 条
  • [31] MODELIZATION OF 2D AND AXISYMMETRIC MAGNETODYNAMIC DOMAIN BY THE FINITE-ELEMENTS METHOD
    MEUNIER, G
    SHEN, DZ
    COULOMB, JL
    IEEE TRANSACTIONS ON MAGNETICS, 1988, 24 (01) : 166 - 169
  • [32] Stochastic identification of masonry parameters in 2D finite elements continuum models
    Bartolini, Giada
    De Falco, Anna
    Landi, Filippo
    COUPLED SYSTEMS MECHANICS, 2023, 12 (05): : 429 - 444
  • [33] On embedded discontinuity finite elements for modelling fractures in 2d solids and frames
    Brank, B.
    INSIGHTS AND INNOVATIONS IN STRUCTURAL ENGINEERING, MECHANICS AND COMPUTATION, 2016, : 537 - 543
  • [34] On some properties of 2D spectral finite elements in problems of wave propagation
    Witkowski, Wojciech
    Rucka, Magdalena
    Chroscielewski, Jacek
    Wilde, Krzysztof
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2012, 55 : 31 - 41
  • [35] Quadrilateral 2D linked-interpolation finite elements for micropolar continuum
    Sara Grbčić
    Gordan Jelenić
    Dragan Ribarić
    Acta Mechanica Sinica, 2019, 35 : 1001 - 1020
  • [36] Finite strain fracture of 2D problems with injected anisotropic softening elements
    Areias, P.
    Rabczuk, T.
    Camanho, P. P.
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2014, 72 : 50 - 63
  • [37] A simple error estimator for size and distortion of 2D isoparametric finite elements
    Oh, HS
    Lim, JK
    COMPUTERS & STRUCTURES, 1996, 59 (06) : 989 - 999
  • [38] Finite elements and mass lumping for Maxwell's equations: the 2D case
    Elmkies, A
    Joly, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (11): : 1287 - 1293
  • [39] Quadrilateral 2D linked-interpolation finite elements for micropolar continuum
    Grbcic, Sara
    Jelenic, Gordan
    Ribaric, Dragan
    ACTA MECHANICA SINICA, 2019, 35 (05) : 1001 - 1020
  • [40] DETERMINING FINITE VOLUME ELEMENTS FOR THE 2D NAVIER-STOKES EQUATIONS
    JONES, DA
    TITI, ES
    PHYSICA D, 1992, 60 (1-4): : 165 - 174