DETERMINING FINITE VOLUME ELEMENTS FOR THE 2D NAVIER-STOKES EQUATIONS

被引:73
|
作者
JONES, DA [1 ]
TITI, ES [1 ]
机构
[1] CORNELL UNIV,INST MATH SCI,ITHACA,NY 14853
来源
PHYSICA D | 1992年 / 60卷 / 1-4期
基金
美国国家科学基金会;
关键词
D O I
10.1016/0167-2789(92)90233-D
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the 2D Navier-Stokes equations on a square with periodic boundary conditions. Dividing the square into N equal subsquares, we show that if the asymptotic behavior of the average of solutions on these subsquares (finite volume elements) is known, then the large time behavior of the solution itself is completely determined, provided N is large enough. We also establish a rigorous upper bound for N needed to determine the solutions to the Navier-Stokes equation in terms of the physical parameters of the problem.
引用
收藏
页码:165 / 174
页数:10
相关论文
共 50 条