Non-existence of phase transition of oriented percolation on Sierpinski carpet lattices

被引:0
|
作者
Masato Shinoda
机构
[1] Department of Mathematics,
[2] Nara Women's University,undefined
[3] Kitauoya-Nishimachi,undefined
[4] Nara city,undefined
[5] Nara 630-8506,undefined
[6] Japan. e-mail: shinoda@cc.nara-wu.ac.jp,undefined
来源
关键词
Phase Transition; Critical Probability; Sierpinski Carpet; Percolation Problem; Oriented Percolation;
D O I
暂无
中图分类号
学科分类号
摘要
 A percolation problem on Sierpinski carpet lattices is considered. It is obtained that the critical probability \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} of oriented percolation is equal to 1. In contrast it was already shown that the critical probability pc of percolation is strictly less than 1 in Kumagai [9]. This result shows a difference between fractal-like lattice and ℤd lattice.
引用
收藏
页码:447 / 456
页数:9
相关论文
共 42 条