Existence of phase transition of percolation on Sierpnski carpet lattices

被引:0
|
作者
Shinoda, M [1 ]
机构
[1] Nara Womens Univ, Fac Sci, Dept Math, Nara 6308506, Japan
关键词
percolation; Sierpinski carpet; phase transition; isoperimetric dimension;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study Bernoulli bond percolation on Sierpinski carpet lattices, which is a class of graphs corresponding to generalized Sierpinski carpets. In this paper we give a sufficient condition for the existence of a phase transition on the lattices. The proof is suitable for graphs which have self-similarity. We also discuss the relation between the existence of a phase transition and the isoperimetric dimension.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [1] Non-existence of phase transition of oriented percolation on Sierpinski carpet lattices
    Shinoda, M
    PROBABILITY THEORY AND RELATED FIELDS, 2003, 125 (03) : 447 - 456
  • [2] Non-existence of phase transition of oriented percolation on Sierpinski carpet lattices
    Masato Shinoda
    Probability Theory and Related Fields, 2003, 125 : 447 - 456
  • [3] Existence of a phase transition for entanglement percolation
    Holroyd, AE
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2000, 129 : 231 - 251
  • [4] EXISTENCE OF PHASE TRANSITION FOR PERCOLATION USING THE GAUSSIAN FREE FIELD
    Duminil-Copin, Hugo
    Goswami, Subhajit
    Raoufi, Aran
    Severo, Franco
    Yadin, Ariel
    DUKE MATHEMATICAL JOURNAL, 2020, 169 (18) : 3539 - 3563
  • [5] Phase Transition in Long-Range Percolation on Bipartite Hierarchical Lattices
    Shang, Yilun
    SCIENTIFIC WORLD JOURNAL, 2013,
  • [6] Existence of an intermediate phase for oriented percolation
    Lacoin, Hubert
    ELECTRONIC JOURNAL OF PROBABILITY, 2012, 17 : 1 - 17
  • [7] Percolation phase transition by removal of k2-mers from fully occupied lattices
    Ramirez, L. S.
    Centres, P. M.
    Ramirez-Pastor, A. J.
    PHYSICAL REVIEW E, 2019, 100 (03)
  • [8] Phase Transition in Dependent Percolation
    Christopher Hoffman
    Communications in Mathematical Physics, 2005, 254 : 1 - 22
  • [9] Phase transition in loop percolation
    Chang, Yinshan
    Sapozhnikov, Artem
    PROBABILITY THEORY AND RELATED FIELDS, 2016, 164 (3-4) : 979 - 1025
  • [10] Universality of critical existence probability for percolation on three-dimensional lattices
    Lin, CY
    Hu, CK
    Chen, JA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (05): : L111 - L117