Analytic Solution of the Fractional Order Non-linear Schrödinger Equation and the Fractional Order Klein Gordon Equation

被引:0
|
作者
Md Ramjan Ali
Uttam Ghosh
Susmita Sarkar
Shantanu Das
机构
[1] University of Calcutta,Department of Applied Mathematics
[2] Reactor Control Systems Design Section E & I Group BARC,undefined
关键词
Fractional sub-equation method; Space–time fractional non-linear Schrödinger equation; Space–time fractional non-linear Klein Gordon equation;
D O I
暂无
中图分类号
学科分类号
摘要
Solutions of the space–time fractional order non-linear Schrödinger equation and nonlinear Klein Gordon equation have been found here using fractional sub-equation method and improved fractional sub-equation method. All solutions obtained are exact solutions. Graphical presentations of those solutions have been done.
引用
下载
收藏
页码:499 / 512
页数:13
相关论文
共 50 条
  • [21] NUMERICAL-SOLUTION OF A NON-LINEAR KLEIN-GORDON EQUATION
    STRAUSS, W
    VAZQUEZ, L
    JOURNAL OF COMPUTATIONAL PHYSICS, 1978, 28 (02) : 271 - 278
  • [22] Travelling wave solution for non-linear Klein-Gordon equation
    Neirameh, Ahmad
    Ghasemi, Rahmat
    Roozi, Afshin
    INTERNATIONAL JOURNAL OF THE PHYSICAL SCIENCES, 2010, 5 (16): : 2528 - 2531
  • [23] A New Perspective on The Numerical Solution for Fractional Klein Gordon Equation
    Karaagac, Berat
    Ucar, Yusuf
    Yagmurlu, N. Murat
    Esen, Alaattin
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2019, 22 (02): : 443 - 451
  • [24] A sixth-order nonlinear Schrödinger equation as a reduction of the nonlinear Klein–Gordon equation for slowly modulated wave trains
    Yuri V. Sedletsky
    Ivan S. Gandzha
    Nonlinear Dynamics, 2018, 94 : 1921 - 1932
  • [25] A High-Order Compact Scheme for the Nonlinear Fractional Klein-Gordon Equation
    Vong, Seakweng
    Wang, Zhibo
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2015, 31 (03) : 706 - 722
  • [26] Time and Space Fractional Schrdinger Equation with Fractional Factor
    相培
    郭永新
    傅景礼
    Communications in Theoretical Physics, 2019, 71 (01) : 16 - 26
  • [27] Instability for the Semiclassical Non-linear Schrödinger Equation
    Nicolas Burq
    Maciej Zworski
    Communications in Mathematical Physics, 2005, 260 : 45 - 58
  • [28] The non-linear Schrödinger equation with a periodic δ-interaction
    Jaime Angulo Pava
    Gustavo Ponce
    Bulletin of the Brazilian Mathematical Society, New Series, 2013, 44 : 497 - 551
  • [29] On the variational principle for the non-linear Schrödinger equation
    Zsuzsanna É. Mihálka
    Ádám Margócsy
    Ágnes Szabados
    Péter R. Surján
    Journal of Mathematical Chemistry, 2020, 58 : 340 - 351
  • [30] Time-fractional Schrödinger equation
    Hassan Emamirad
    Arnaud Rougirel
    Journal of Evolution Equations, 2020, 20 : 279 - 293