Instability for the Semiclassical Non-linear Schrödinger Equation

被引:0
|
作者
Nicolas Burq
Maciej Zworski
机构
[1] Université Paris Sud,Mathematics Department
[2] Mathématiques,undefined
[3] Institut Universitaive de France,undefined
[4] University of California,undefined
来源
关键词
Neural Network; Statistical Physic; Complex System; Nonlinear Dynamics; Sobolev Space;
D O I
暂无
中图分类号
学科分类号
摘要
We adapt recent results on instability for non-linear Schrödinger equations to the semi-classical setting. Rather than work with Sobolev spaces we estimate projective instability in terms of the small constant, h, appearing in the equation. Our motivation comes from the Gross-Pitaevski equation used in the study of Bose-Einstein condensation.
引用
收藏
页码:45 / 58
页数:13
相关论文
共 50 条
  • [1] The non-linear Schrödinger equation with a periodic δ-interaction
    Jaime Angulo Pava
    Gustavo Ponce
    Bulletin of the Brazilian Mathematical Society, New Series, 2013, 44 : 497 - 551
  • [2] On the variational principle for the non-linear Schrödinger equation
    Zsuzsanna É. Mihálka
    Ádám Margócsy
    Ágnes Szabados
    Péter R. Surján
    Journal of Mathematical Chemistry, 2020, 58 : 340 - 351
  • [3] Instability for the semiclassical non-linear Schrodinger equation
    Burq, N
    Zworski, M
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 260 (01) : 45 - 58
  • [4] Destruction of the Beating Effect¶for a Non-Linear Schrödinger Equation
    Vincenzo Grecchi
    André Martinez
    Andrea Sacchetti
    Communications in Mathematical Physics, 2002, 227 : 191 - 209
  • [5] Haar wavelet collocation method for linear and non-linear Schrödinger equation
    Khan, Muhammad Ubaid
    Shah, Syed Azhar Ali
    Ahsan, Muhammad
    Alwuthaynani, Maher
    PHYSICA SCRIPTA, 2025, 100 (01)
  • [6] Non-linear Schrödinger equation with non-local regional diffusion
    Patricio Felmer
    César Torres
    Calculus of Variations and Partial Differential Equations, 2015, 54 : 75 - 98
  • [7] Ergodicity for a weakly damped stochastic non-linear Schrödinger equation
    Arnaud Debussche
    Cyril Odasso
    Journal of Evolution Equations, 2005, 5 : 317 - 356
  • [8] Structure of the set of positive solutions of a non-linear Schrödinger equation
    Giovany M. Figueiredo
    João R. Santos Júnior
    Antonio Suárez
    Israel Journal of Mathematics, 2018, 227 : 485 - 505
  • [9] Rapidity distribution within the defocusing non-linear Schrödinger equation model
    Bezzaz, Yasser
    Dubois, Lea
    Bouchoule, Isabelle
    SCIPOST PHYSICS CORE, 2023, 6 (03):
  • [10] A meshfree approach for analysis and computational modeling of non-linear Schrödinger equation
    Ram Jiwari
    Sanjay Kumar
    R. C. Mittal
    Jan Awrejcewicz
    Computational and Applied Mathematics, 2020, 39