Instability for the Semiclassical Non-linear Schrödinger Equation

被引:0
|
作者
Nicolas Burq
Maciej Zworski
机构
[1] Université Paris Sud,Mathematics Department
[2] Mathématiques,undefined
[3] Institut Universitaive de France,undefined
[4] University of California,undefined
来源
关键词
Neural Network; Statistical Physic; Complex System; Nonlinear Dynamics; Sobolev Space;
D O I
暂无
中图分类号
学科分类号
摘要
We adapt recent results on instability for non-linear Schrödinger equations to the semi-classical setting. Rather than work with Sobolev spaces we estimate projective instability in terms of the small constant, h, appearing in the equation. Our motivation comes from the Gross-Pitaevski equation used in the study of Bose-Einstein condensation.
引用
收藏
页码:45 / 58
页数:13
相关论文
共 50 条
  • [21] Semiclassical limit of an inverse problem for the Schrödinger equation
    Shi Chen
    Qin Li
    Research in the Mathematical Sciences, 2021, 8
  • [22] SEMICLASSICAL LIMIT TO THE GENERALIZED NONLINEAR SCHR?DINGER EQUATION
    Boling Guo
    Guoquan Qin
    AnnalsofAppliedMathematics, 2018, 34 (03) : 221 - 243
  • [23] On the semiclassical limit of the focusing nonlinear Schrödinger equation
    School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, United States
    不详
    Phys Lett Sect A Gen At Solid State Phys, 1-2 (75-86):
  • [24] Scattering threshold for a focusing inhomogeneous non-linear Schrödinger equation with inverse square potential
    Salah Boulaaras
    Radhia Ghanmi
    Tarek Saanouni
    Boundary Value Problems, 2023
  • [25] Optical solitons to the (1+2)-dimensional Chiral non-linear Schrödinger equation
    Muslum Ozisik
    Mustafa Bayram
    Aydin Secer
    Melih Cinar
    Abdullahi Yusuf
    Tukur Abdulkadir Sulaiman
    Optical and Quantum Electronics, 2022, 54
  • [26] Liouville integrable defects: the non-linear Schrödinger paradigm
    Jean Avan
    Anastasia Doikou
    Journal of High Energy Physics, 2012
  • [27] Analytic Solution of the Fractional Order Non-linear Schrödinger Equation and the Fractional Order Klein Gordon Equation
    Md Ramjan Ali
    Uttam Ghosh
    Susmita Sarkar
    Shantanu Das
    Differential Equations and Dynamical Systems, 2022, 30 : 499 - 512
  • [28] Spectrum of a quantum parity non-linear Schrödinger model
    Li, You-Quan
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1996, 212 (05): : 241 - 246
  • [29] On non-linear Schrödinger equations for open quantum systems
    S. V. Mousavi
    S. Miret-Artés
    The European Physical Journal Plus, 134
  • [30] On the Linear Forms of the Schrödinger Equation
    Y. Kasri
    A. Bérard
    Y. Grandati
    L. Chetouani
    International Journal of Theoretical Physics, 2012, 51 : 1370 - 1378