On the graphs of products of continuous functions and fractal dimensions

被引:0
|
作者
Jia Liu
Saisai Shi
Yuan Zhang
机构
[1] Anhui University of Finance and Economics,Institute of Statistics and Applied Mathematics
来源
Acta Mathematica Scientia | 2023年 / 43卷
关键词
Hausdorff dimension; packing dimension; graph of function; product of functions; 28A80; 54C05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the graph of the product of continuous functions in terms of Hausdorff and packing dimensions. More precisely, we show that, given a real number 1 ≤ β ≤ 2, any real-valued continuous function in C([0, 1]) can be decomposed into a product of two real-valued continuous functions, each having a graph of Hausdorff dimension β. In addition, a product decomposition result for the packing dimension is obtained. This work answers affirmatively two questions raised by Verma and Priyadarshi [14].
引用
收藏
页码:2483 / 2492
页数:9
相关论文
共 50 条
  • [31] Fractal zeta functions and complex dimensions of relative fractal drums
    Michel L. Lapidus
    Goran Radunović
    Darko Žubrinić
    [J]. Journal of Fixed Point Theory and Applications, 2014, 15 : 321 - 378
  • [32] Fractal zeta functions and complex dimensions of relative fractal drums
    Lapidus, Michel L.
    Radunovic, Goran
    Zubrinic, Darko
    [J]. JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2014, 15 (02) : 321 - 378
  • [33] Dimensions of graphs of prevalent continuous maps
    Balka, Richard
    [J]. JOURNAL OF FRACTAL GEOMETRY, 2016, 3 (04) : 407 - 428
  • [34] Approximation with continuous functions preserving fractal dimensions of the Riemann-Liouville operators of fractional calculus
    Binyan Yu
    Yongshun Liang
    [J]. Fractional Calculus and Applied Analysis, 2023, 26 : 2805 - 2836
  • [35] Approximation with continuous functions preserving fractal dimensions of the Riemann-Liouville operators of fractional calculus
    Yu, Binyan
    Liang, Yongshun
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (06) : 2805 - 2836
  • [36] ON THE DECOMPOSITION OF CONTINUOUS FUNCTIONS AND DIMENSIONS
    Liu, Jia
    Liu, Dezhi
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (01)
  • [37] Dimensions of prevalent continuous functions
    Gruslys, V.
    Jonusas, J.
    Mijovic, V.
    Ng, O.
    Olsen, L.
    Petrykiewicz, I.
    [J]. MONATSHEFTE FUR MATHEMATIK, 2012, 166 (02): : 153 - 180
  • [38] Dimensions of prevalent continuous functions
    V. Gruslys
    J. Jonušas
    V. Mijović
    O. Ng
    L. Olsen
    I. Petrykiewicz
    [J]. Monatshefte für Mathematik, 2012, 166 : 153 - 180
  • [39] Continuous functions with impermeable graphs
    Buczolich, Zoltan
    Leobacher, Gunther
    Steinicke, Alexander
    [J]. MATHEMATISCHE NACHRICHTEN, 2023, 296 (10) : 4778 - 4805
  • [40] Dimensions of new fractal functions and associated measures
    Verma, Manuj
    Priyadarshi, Amit
    [J]. NUMERICAL ALGORITHMS, 2023, 94 (02) : 817 - 846