Dimensions of prevalent continuous functions

被引:0
|
作者
V. Gruslys
J. Jonušas
V. Mijović
O. Ng
L. Olsen
I. Petrykiewicz
机构
[1] University of Cambridge,Christ’s College
[2] University of St. Andrews,Department of Mathematics
[3] University of Belgrade,Faculty of Mathematics
[4] Université de Grenoble 1,Institut Fourier
来源
关键词
Box dimension; Hölder exponent; Renyi dimension; Multifractals; Prevalence; Shyness; 28A78; 28A80;
D O I
暂无
中图分类号
学科分类号
摘要
Let K be a compact subset of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{d}}$$\end{document} and write C(K) for the family of continuous functions on K. In this paper we study different fractal and multifractal dimensions of functions in C(K) that are generic in the sense of prevalence. We first prove a number of general results, namely, for arbitrary “dimension” functions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta:C(K) \to \mathbb{R}}$$\end{document} satisfying various natural scaling conditions, we obtain formulas for the “dimension” Δ(f) of a prevalent function f in C(K); this is the contents of Theorems 1.1–1.3. By applying Theorems 1.1–1.3 to appropriate choices of Δ we obtain the following results: we compute the (lower and upper) local dimension of a prevalent function f in C(K); we compute the (lower or upper) Hölder exponent at a point x of a prevalent function f in C(K); finally, we compute the (lower or upper) Renyi dimensions of a prevalent function f in C(K). Perhaps surprisingly, in many cases our results are very different from the corresponding results for continuous functions that are generic in the sense of Baire category.
引用
收藏
页码:153 / 180
页数:27
相关论文
共 50 条
  • [1] Dimensions of prevalent continuous functions
    Gruslys, V.
    Jonusas, J.
    Mijovic, V.
    Ng, O.
    Olsen, L.
    Petrykiewicz, I.
    [J]. MONATSHEFTE FUR MATHEMATIK, 2012, 166 (02): : 153 - 180
  • [2] On the 1-prevalent continuous functions on compact sets and dimensions
    Liu, Jia
    Tan, Bo
    Wu, Jun
    [J]. NONLINEARITY, 2023, 36 (07) : 3734 - 3750
  • [3] Dimensions of graphs of prevalent continuous maps
    Balka, Richard
    [J]. JOURNAL OF FRACTAL GEOMETRY, 2016, 3 (04) : 407 - 428
  • [4] THE HAUSDORFF DIMENSION OF GRAPHS OF PREVALENT CONTINUOUS FUNCTIONS
    Fraser, Jonathan M.
    Hyde, James T.
    [J]. REAL ANALYSIS EXCHANGE, 2011, 37 (02) : 333 - 351
  • [5] ON THE DECOMPOSITION OF CONTINUOUS FUNCTIONS AND DIMENSIONS
    Liu, Jia
    Liu, Dezhi
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (01)
  • [6] Ergodic Optimization of Prevalent Super-continuous Functions
    Bochi, Jairo
    Zhang, Yiwei
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (19) : 5988 - 6017
  • [7] FRACTAL DIMENSIONS OF THE LOGARITHM OF CONTINUOUS FUNCTIONS
    Liu, Peizhi
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024, 32 (01)
  • [8] Graphs of continuous functions and fractal dimensions
    Verma, Manuj
    Priyadarshi, Amit
    [J]. CHAOS SOLITONS & FRACTALS, 2023, 172
  • [9] ON THE GRAPHS OF PRODUCTS OF CONTINUOUS FUNCTIONS AND FRACTAL DIMENSIONS
    刘佳
    石赛赛
    张远
    [J]. Acta Mathematica Scientia, 2023, 43 (06) : 2483 - 2492
  • [10] On strict homological dimensions of algebras of continuous functions
    S. B. Tabaldyev
    [J]. Mathematical Notes, 2006, 80 : 715 - 725