Dimensions of prevalent continuous functions

被引:0
|
作者
V. Gruslys
J. Jonušas
V. Mijović
O. Ng
L. Olsen
I. Petrykiewicz
机构
[1] University of Cambridge,Christ’s College
[2] University of St. Andrews,Department of Mathematics
[3] University of Belgrade,Faculty of Mathematics
[4] Université de Grenoble 1,Institut Fourier
来源
关键词
Box dimension; Hölder exponent; Renyi dimension; Multifractals; Prevalence; Shyness; 28A78; 28A80;
D O I
暂无
中图分类号
学科分类号
摘要
Let K be a compact subset of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{d}}$$\end{document} and write C(K) for the family of continuous functions on K. In this paper we study different fractal and multifractal dimensions of functions in C(K) that are generic in the sense of prevalence. We first prove a number of general results, namely, for arbitrary “dimension” functions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta:C(K) \to \mathbb{R}}$$\end{document} satisfying various natural scaling conditions, we obtain formulas for the “dimension” Δ(f) of a prevalent function f in C(K); this is the contents of Theorems 1.1–1.3. By applying Theorems 1.1–1.3 to appropriate choices of Δ we obtain the following results: we compute the (lower and upper) local dimension of a prevalent function f in C(K); we compute the (lower or upper) Hölder exponent at a point x of a prevalent function f in C(K); finally, we compute the (lower or upper) Renyi dimensions of a prevalent function f in C(K). Perhaps surprisingly, in many cases our results are very different from the corresponding results for continuous functions that are generic in the sense of Baire category.
引用
收藏
页码:153 / 180
页数:27
相关论文
共 50 条
  • [41] Prevalent properties, versus generic ones, of the continuous images
    Kahane, JP
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2006, 130 (02): : 97 - 109
  • [42] On δ-β-continuous functions
    Hatir, E.
    Noiri, T.
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 42 (01) : 205 - 211
  • [43] ψ-continuous functions
    Filipczak M.
    Terepeta M.
    [J]. Rendiconti del Circolo Matematico di Palermo, 2009, 58 (2) : 245 - 255
  • [44] Continuous freezing in three dimensions
    Sear, RP
    Frenkel, D
    [J]. PHYSICAL REVIEW LETTERS, 2003, 90 (19)
  • [45] Local behavior of traces of Besov functions: Prevalent results
    Aubry, Jean-Marie
    Maman, Delphine
    Seuret, Stephane
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (03) : 631 - 660
  • [46] ON FINITELY CONTINUOUS DARBOUX FUNCTIONS AND STRONG FINITELY CONTINUOUS FUNCTIONS
    Marciniak, Mariola
    [J]. REAL ANALYSIS EXCHANGE, 2007, 33 (01) : 15 - 22
  • [47] Some prevalent results about strongly monoHolder functions
    Clausel, Marianne
    Nicolay, Samuel
    [J]. NONLINEARITY, 2010, 23 (09) : 2101 - 2116
  • [48] Prevalent Fast Evolution of Genes Involved in Heterochromatin Functions
    Lin, Leila
    Huang, Yuheng
    Mcintyre, Jennifer
    Chang, Ching-Ho
    Colmenares, Serafin
    Lee, Yuh Chwen G.
    [J]. MOLECULAR BIOLOGY AND EVOLUTION, 2024, 41 (09)
  • [49] A CONTINUOUS TALE ON CONTINUOUS AND SEPARATELY CONTINUOUS FUNCTIONS
    Ciesielski, Krzysztof Chris
    Miller, David
    [J]. REAL ANALYSIS EXCHANGE, 2016, 41 (01) : 19 - 54
  • [50] Primitives of continuous functions via continuous piecewise linear functions
    Lou, Hongwei
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2024,