Predominating a Vertex in the Connected Domination Game

被引:0
|
作者
Csilla Bujtás
Vesna Iršič
Sandi Klavžar
机构
[1] University of Ljubljana,Faculty of Mathematics and Physics
[2] Institute of Mathematics,Faculty of Natural Sciences and Mathematics
[3] Physics and Mechanics,Faculty of Information Technology
[4] University of Maribor,Department of Mathematics
[5] University of Pannonia,undefined
[6] Simon Fraser University,undefined
来源
Graphs and Combinatorics | 2022年 / 38卷
关键词
Domination game; Connected domination game; Continuation Principle; Vertex predomination; 05C57; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
The connected domination game is played just as the domination game, with an additional requirement that at each stage of the game the vertices played induce a connected subgraph. The number of moves in a D-game (an S-game, resp.) on a graph G when both players play optimally is denoted by γcg(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _\mathrm{cg}(G)$$\end{document} (γcg′(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _\mathrm{cg}'(G)$$\end{document}, resp.). Connected Game Continuation Principle is established as a substitute for the classical Continuation Principle which does not hold for the connected domination game. Let G|x denote the graph G together with a declaration that the vertex x is already dominated. The first main result asserts that if G is a graph with γcg(G)≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _\mathrm{cg}(G) \ge 3$$\end{document} and x∈V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \in V(G)$$\end{document}, then γcg(G|x)≤2γcg(G)-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _\mathrm{cg}(G|x) \le 2 \gamma _\mathrm{cg}(G) - 3$$\end{document} and the bound is sharp. The second main theorem states that if G is a graph with n(G)≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n(G) \ge 2$$\end{document} and x∈V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \in V(G)$$\end{document}, then γcg(G|x)≥12γcg(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _\mathrm{cg}(G|x) \ge \left\lceil \frac{1}{2} \gamma _\mathrm{cg}(G) \right\rceil$$\end{document} and the bound is sharp. Graphs G and their vertices x for which γcg′(G|x)=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _\mathrm{cg}'(G|x) = \infty$$\end{document} holds are also characterized.
引用
收藏
相关论文
共 50 条
  • [1] Predominating a Vertex in the Connected Domination Game
    Bujtas, Csilla
    Irsic, Vesna
    Klavzar, Sandi
    GRAPHS AND COMBINATORICS, 2022, 38 (03)
  • [2] Vertex Criticality for Connected Domination
    Ananchuen, W.
    Ananchuen, N.
    Plummer, M. D.
    UTILITAS MATHEMATICA, 2011, 86 : 45 - 64
  • [3] CONNECTED DOMINATION GAME
    Borowiecki, Mieczyslaw
    Fiedorowicz, Anna
    Sidorowicz, Elzbieta
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2019, 13 (01) : 261 - 289
  • [4] Connected Domination: Vertex Criticality and Matchings
    Ananchuen, W.
    Ananchuen, N.
    Plummer, M. D.
    UTILITAS MATHEMATICA, 2012, 89 : 141 - 159
  • [5] TOTAL CONNECTED DOMINATION GAME
    Bujtas, Csilla
    Henning, Michael A.
    Irsic, Vesna
    Klavzar, Sandi
    OPUSCULA MATHEMATICA, 2021, 41 (04) : 453 - 464
  • [6] CONNECTED MAJORITY DOMINATION VERTEX CRITICAL GRAPHS
    Manora, J. Joseline
    Vairavel, T. Muthukani
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2021, 11 : 112 - 123
  • [7] Improved Budgeted Connected Domination and Budgeted Edge-Vertex Domination
    Lamprou, Ioannis
    Sigalas, Ioannis
    Zissimopoulos, Vassilis
    COMBINATORIAL ALGORITHMS, IWOCA 2020, 2020, 12126 : 368 - 381
  • [8] Improved Budgeted Connected Domination and Budgeted Edge-Vertex Domination
    Lamprou, Ioannis
    Sigalas, Ioannis
    Zissimopoulos, Vassilis
    THEORETICAL COMPUTER SCIENCE, 2021, 858 : 1 - 12
  • [9] On the Structure of Graphs Vertex Critical with Respect to Connected Domination
    Plummer, Michael D.
    RESEARCH TRENDS IN COMBINATORIAL OPTIMIZATION, 2009, : 303 - 315
  • [10] Total outer connected vertex-edge domination
    Senthilkumar, B.
    Kumar, H. Naresh
    Venkatakrishnan, Y. B.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (01)