Crossing Number for Graphs with Bounded Pathwidth

被引:0
|
作者
Therese Biedl
Markus Chimani
Martin Derka
Petra Mutzel
机构
[1] University of Waterloo,David R. Cheriton School of Computer Science
[2] Universität Osnabrück,Department of Computer Science
[3] Technische Universität Dortmund,Department of Computer Science
来源
Algorithmica | 2020年 / 82卷
关键词
Crossing number; Pathwidth; Approximation; Graph algorithms; Complexity;
D O I
暂无
中图分类号
学科分类号
摘要
The crossing number is the smallest number of pairwise edge crossings when drawing a graph into the plane. There are only very few graph classes for which the exact crossing number is known or for which there at least exist constant approximation ratios. Furthermore, up to now, general crossing number computations have never been successfully tackled using bounded width of graph decompositions, like treewidth or pathwidth. In this paper, we show that the crossing number is tractable (even in linear time) for maximal graphs of bounded pathwidth 3. The technique also shows that the crossing number and the rectilinear (a.k.a. straight-line) crossing number are identical for this graph class, and that we require only an O(n)×O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n)\times O(n)$$\end{document}-grid to achieve such a drawing. Our techniques can further be extended to devise a 2-approximation for general graphs with pathwidth 3. One crucial ingredient here is that the crossing number of a graph with a separation pair can be lower-bounded using the crossing numbers of its cut-components, a result that may be interesting in its own right. Finally, we give a 4w3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4{\mathbf{w}}^3$$\end{document}-approximation of the crossing number for maximal graphs of pathwidth w\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{w}}$$\end{document}. This is a constant approximation for bounded pathwidth. We complement this with an NP-hardness proof of the weighted crossing number already for pathwidth 3 graphs and bicliques K3,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{3,n}$$\end{document}.
引用
收藏
页码:355 / 384
页数:29
相关论文
共 50 条
  • [41] On the structure of graphs with bounded clique number
    Brandt, S
    COMBINATORICA, 2003, 23 (04) : 693 - 696
  • [42] On the Structure of Graphs with Bounded Asteroidal Number
    Ton Kloks
    Dieter Kratsch
    Haiko Müller
    Graphs and Combinatorics, 2001, 17 : 295 - 306
  • [43] Approximating the pathwidth of outerplanar graphs
    Govindan, R
    Langston, MA
    Yan, XD
    INFORMATION PROCESSING LETTERS, 1998, 68 (01) : 17 - 23
  • [44] Pathwidth of Planar and Line Graphs
    Fedor V. Fomin
    Graphs and Combinatorics, 2003, 19 : 91 - 99
  • [45] On the structure of graphs with bounded asteroidal number
    Kloks, T
    Kratsch, D
    Müller, H
    GRAPHS AND COMBINATORICS, 2001, 17 (02) : 295 - 306
  • [46] On the number of labeled graphs of bounded treewidth
    Baste, Julien
    Noy, Marc
    Sau, Ignasi
    EUROPEAN JOURNAL OF COMBINATORICS, 2018, 71 : 12 - 21
  • [47] On the powers of graphs with bounded asteroidal number
    Ho, TY
    Chang, JM
    Wang, YL
    DISCRETE MATHEMATICS, 2000, 223 (1-3) : 125 - 133
  • [48] COMPLEXES OF GRAPHS WITH BOUNDED INDEPENDENCE NUMBER
    Kim, Minki
    Lew, Alan
    ISRAEL JOURNAL OF MATHEMATICS, 2022, 249 (01) : 83 - 120
  • [49] On the Number of Labeled Graphs of Bounded Treewidth
    Baste, Julien
    Noy, Marc
    Sau, Ignasi
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE (WG 2017), 2017, 10520 : 88 - 99
  • [50] Complexes of graphs with bounded independence number
    Minki Kim
    Alan Lew
    Israel Journal of Mathematics, 2022, 249 : 83 - 120