Crossing Number for Graphs with Bounded Pathwidth

被引:0
|
作者
Therese Biedl
Markus Chimani
Martin Derka
Petra Mutzel
机构
[1] University of Waterloo,David R. Cheriton School of Computer Science
[2] Universität Osnabrück,Department of Computer Science
[3] Technische Universität Dortmund,Department of Computer Science
来源
Algorithmica | 2020年 / 82卷
关键词
Crossing number; Pathwidth; Approximation; Graph algorithms; Complexity;
D O I
暂无
中图分类号
学科分类号
摘要
The crossing number is the smallest number of pairwise edge crossings when drawing a graph into the plane. There are only very few graph classes for which the exact crossing number is known or for which there at least exist constant approximation ratios. Furthermore, up to now, general crossing number computations have never been successfully tackled using bounded width of graph decompositions, like treewidth or pathwidth. In this paper, we show that the crossing number is tractable (even in linear time) for maximal graphs of bounded pathwidth 3. The technique also shows that the crossing number and the rectilinear (a.k.a. straight-line) crossing number are identical for this graph class, and that we require only an O(n)×O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n)\times O(n)$$\end{document}-grid to achieve such a drawing. Our techniques can further be extended to devise a 2-approximation for general graphs with pathwidth 3. One crucial ingredient here is that the crossing number of a graph with a separation pair can be lower-bounded using the crossing numbers of its cut-components, a result that may be interesting in its own right. Finally, we give a 4w3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4{\mathbf{w}}^3$$\end{document}-approximation of the crossing number for maximal graphs of pathwidth w\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{w}}$$\end{document}. This is a constant approximation for bounded pathwidth. We complement this with an NP-hardness proof of the weighted crossing number already for pathwidth 3 graphs and bicliques K3,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{3,n}$$\end{document}.
引用
收藏
页码:355 / 384
页数:29
相关论文
共 50 条
  • [31] On the rectilinear crossing number of complete graphs
    Wagner, U
    PROCEEDINGS OF THE FOURTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2003, : 583 - 588
  • [32] Crossing number of graphs with rotation systems
    Pelsmajer, Michael J.
    Schaefer, Marcus
    Stefankovic, Daniel
    GRAPH DRAWING, 2008, 4875 : 3 - +
  • [33] CUBIC GRAPHS WITH CROSSING NUMBER 2
    RICHTER, B
    JOURNAL OF GRAPH THEORY, 1988, 12 (03) : 363 - 374
  • [34] SPACE STRUCTURES AND THE CROSSING NUMBER OF THEIR GRAPHS
    KAVEH, A
    MECHANICS OF STRUCTURES AND MACHINES, 1993, 21 (02): : 151 - 166
  • [35] Crossing number is hard for cubic graphs
    Hlineny, P
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2004, PROCEEDINGS, 2004, 3153 : 772 - 782
  • [36] Approximating the Crossing Number of Apex Graphs
    Chimani, Markus
    Hlineny, Petr
    Mutzel, Petra
    GRAPH DRAWING, 2009, 5417 : 432 - 434
  • [37] On the crossing number of almost planar graphs
    Hlineny, Petr
    Salazar, Gelasio
    GRAPH DRAWING, 2007, 4372 : 162 - +
  • [38] Approximating the crossing number of toroidal graphs
    Hlineny, Petr
    Salazar, Gelasio
    ALGORITHMS AND COMPUTATION, 2007, 4835 : 148 - +
  • [39] On the Crossing Number of Almost Planar Graphs
    Mohar, Bojan
    INFORMATICA-JOURNAL OF COMPUTING AND INFORMATICS, 2006, 30 (03): : 301 - 303
  • [40] SYMMETRY AND CROSSING NUMBER FOR COMPLETE GRAPHS
    SAATY, TL
    JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION B-MATHEMATICAL SCIENCES, 1969, B 73 (02): : 177 - +