Crossing Number for Graphs with Bounded Pathwidth

被引:0
|
作者
Therese Biedl
Markus Chimani
Martin Derka
Petra Mutzel
机构
[1] University of Waterloo,David R. Cheriton School of Computer Science
[2] Universität Osnabrück,Department of Computer Science
[3] Technische Universität Dortmund,Department of Computer Science
来源
Algorithmica | 2020年 / 82卷
关键词
Crossing number; Pathwidth; Approximation; Graph algorithms; Complexity;
D O I
暂无
中图分类号
学科分类号
摘要
The crossing number is the smallest number of pairwise edge crossings when drawing a graph into the plane. There are only very few graph classes for which the exact crossing number is known or for which there at least exist constant approximation ratios. Furthermore, up to now, general crossing number computations have never been successfully tackled using bounded width of graph decompositions, like treewidth or pathwidth. In this paper, we show that the crossing number is tractable (even in linear time) for maximal graphs of bounded pathwidth 3. The technique also shows that the crossing number and the rectilinear (a.k.a. straight-line) crossing number are identical for this graph class, and that we require only an O(n)×O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n)\times O(n)$$\end{document}-grid to achieve such a drawing. Our techniques can further be extended to devise a 2-approximation for general graphs with pathwidth 3. One crucial ingredient here is that the crossing number of a graph with a separation pair can be lower-bounded using the crossing numbers of its cut-components, a result that may be interesting in its own right. Finally, we give a 4w3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4{\mathbf{w}}^3$$\end{document}-approximation of the crossing number for maximal graphs of pathwidth w\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{w}}$$\end{document}. This is a constant approximation for bounded pathwidth. We complement this with an NP-hardness proof of the weighted crossing number already for pathwidth 3 graphs and bicliques K3,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{3,n}$$\end{document}.
引用
收藏
页码:355 / 384
页数:29
相关论文
共 50 条
  • [1] Crossing Number for Graphs with Bounded Pathwidth
    Biedl, Therese
    Chimani, Markus
    Derka, Martin
    Mutzel, Petra
    ALGORITHMICA, 2020, 82 (02) : 355 - 384
  • [2] Light Spanners in Bounded Pathwidth Graphs
    Grigni, Michelangelo
    Hung, Hao-Hsiang
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2012, 2012, 7464 : 467 - 477
  • [3] The Bounded Pathwidth of Control-Flow Graphs
    Conrado, Giovanna Kobus
    Goharshady, Amir Kafshdar
    Lam, Chun Kit
    PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL, 2023, 7 (OOPSLA):
  • [4] The List Coloring Reconfiguration Problem for Bounded Pathwidth Graphs
    Hatanaka, Tatsuhiko
    Ito, Takehiro
    Zhou, Xiao
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2015, E98A (06): : 1168 - 1178
  • [5] The List Coloring Reconfiguration Problem for Bounded Pathwidth Graphs
    Hatanaka, Tatsuhiko
    Ito, Takehiro
    Zhou, Xiao
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS (COCOA 2014), 2014, 8881 : 314 - 328
  • [6] Counting Independent Sets in Graphs with Bounded Bipartite Pathwidth
    Dyer, Martin
    Greenhill, Catherine
    Mueller, Haiko
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE (WG 2019), 2019, 11789 : 298 - 310
  • [7] Counting independent sets in graphs with bounded bipartite pathwidth
    Dyer, Martin
    Greenhill, Catherine
    Muller, Haiko
    RANDOM STRUCTURES & ALGORITHMS, 2021, 59 (02) : 204 - 237
  • [8] Approximating Multi Commodity Network Design on Graphs of Bounded Pathwidth and Bounded Degree
    Eickmeyer, Kord
    Kawarabayashi, Ken-ichi
    ALGORITHMIC GAME THEORY, SAGT 2013, 2013, 8146 : 134 - 145
  • [9] Crossing-number critical graphs have bounded path-width
    Hlineny, P
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2003, 88 (02) : 347 - 367
  • [10] ON THE PATHWIDTH OF CHORDAL GRAPHS
    GUSTEDT, J
    DISCRETE APPLIED MATHEMATICS, 1993, 45 (03) : 233 - 248