Correction: Modelling outcomes after paediatric brain injury with admission laboratory values: a machine-learning approach

被引:0
|
作者
Saeed Kayhanian
Adam M. H. Young
Chaitanya Mangla
Ibrahim Jalloh
Helen M. Fernandes
Matthew R. Garnett
Peter J. Hutchinson
Shruti Agrawal
机构
[1] University of Cambridge,Department of Clinical Neurosciences, Division of Neurosurgery, Addenbrooke’s Hospital
[2] University of Cambridge,Fitzwilliam College
[3] University of Cambridge,Department of Computer Science and Technology
[4] University of Cambridge,Department of Paediatric Intensive Care, Addenbrooke’s Hospital
来源
Pediatric Research | 2019年 / 86卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A correction to this paper has been published and can be accessed via a link at the top of the paper.
引用
收藏
页码:675 / 675
相关论文
共 50 条
  • [31] Comparison of machine learning models to predict long-term outcomes after severe traumatic brain injury
    Arefan, Dooman
    Pease, Matthew
    Eagle, Shawn R.
    Okonkwo, David O.
    Wu, Shandong
    NEUROSURGICAL FOCUS, 2023, 54 (06)
  • [32] A machine-learning approach to volitional control of a closed-loop deep brain stimulation system
    Houston, Brady
    Thompson, Margaret
    Ko, Andrew
    Chizeck, Howard
    JOURNAL OF NEURAL ENGINEERING, 2019, 16 (01)
  • [33] Machine Learning for Predicting Discharge Disposition After Traumatic Brain Injury
    Satyadev, Nihal
    Warman, Pranav I. I.
    Seas, Andreas
    Kolls, Brad J. J.
    Haglund, Michael M. M.
    Fuller, Anthony T. T.
    Dunn, Timothy W. W.
    NEUROSURGERY, 2022, 90 (06) : 768 - 774
  • [34] DATA-DRIVEN DISEASE PROGRESSION PATTERNS OF BRAIN MORPHOLOGY IN SCHIZOPHRENIA: A MACHINE-LEARNING APPROACH
    Sone, D.
    Young, A.
    Shinagawa, S.
    Noda, Y.
    Iwata, Y.
    Tarumi, R.
    Ogyu, K.
    Honda, S.
    Tsugawa, S.
    Matsushita, K.
    Ueno, F.
    Hondo, N.
    Koreki, A.
    Kim, J.
    Caravaggio, F.
    Torres-Carmona, E.
    Mar, W.
    Chan, N.
    Plitman, E.
    Koizumi, T.
    Kato, H.
    Kusudo, K.
    de Luca, V.
    Gerretsen, P.
    Remington, G.
    Onaya, M.
    Uchida, H.
    Mimura, M.
    Shigeta, M.
    Graff-Guerrero, A.
    Nakajima, S.
    AUSTRALIAN AND NEW ZEALAND JOURNAL OF PSYCHIATRY, 2022, 56 (1_SUPPL): : 247 - 247
  • [35] Novel meta-ensemble modelling approach and comparison of machine-learning models for rebar price estimation
    Guvel, Sahin Tolga
    Budak, Abdulkadir
    Karatas, Ibrahim
    GRADEVINAR, 2025, 77 (01): : 27 - 41
  • [36] Machine learning modelling of neuropsychological performance could determine vocational training outcome after a brain injury: Case report
    Manoli, Romina
    Chartaux-Danjou, Laurence
    Delecroix, Helene
    Daveluy, Walter
    Torre, Fabien
    Moroni, Christine
    ANNALS OF PHYSICAL AND REHABILITATION MEDICINE, 2021, 64 (01)
  • [37] Admission Rapid Thrombelastography (rTEG®) Values Predict Resuscitation Volumes and Patient Outcomes After Thermal Injury
    Huzar, Todd F.
    Martinez, Eric
    Love, Joseph
    George, Tonya C.
    Shah, Jaimin
    Baer, Lisa
    Cross, James M.
    Wade, Charles E.
    Cotton, Bryan A.
    JOURNAL OF BURN CARE & RESEARCH, 2018, 39 (03): : 345 - 352
  • [38] Phenotypes of Intensive Care Unit Admission of Critically Ill Sickle Cell Patients in Brazil: An Unsupervised Machine-Learning Approach
    Padrao, E.
    Bustos, B.
    Mahesh, A.
    Fonseca, G.
    Taniguchi, L. U.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2022, 205
  • [39] Association Between Physiologic Frailty and Discharge Outcomes After Admission for Nonoperative Traumatic Brain Injury
    Sastry, Rahul A.
    Feler, Josh
    Shao, Belinda
    Weil, Robert
    Gokaslan, Ziya
    JOURNAL OF NEUROSURGERY, 2022, 136 (05)
  • [40] Prognostic models for prediction of outcomes after traumatic brain injury based on patients admission characteristics
    Kamal, Vineet Kumar
    Agrawal, Deepak
    Pandey, Ravindra Mohan
    BRAIN INJURY, 2016, 30 (04) : 393 - 406