Correction: Modelling outcomes after paediatric brain injury with admission laboratory values: a machine-learning approach

被引:0
|
作者
Saeed Kayhanian
Adam M. H. Young
Chaitanya Mangla
Ibrahim Jalloh
Helen M. Fernandes
Matthew R. Garnett
Peter J. Hutchinson
Shruti Agrawal
机构
[1] University of Cambridge,Department of Clinical Neurosciences, Division of Neurosurgery, Addenbrooke’s Hospital
[2] University of Cambridge,Fitzwilliam College
[3] University of Cambridge,Department of Computer Science and Technology
[4] University of Cambridge,Department of Paediatric Intensive Care, Addenbrooke’s Hospital
来源
Pediatric Research | 2019年 / 86卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A correction to this paper has been published and can be accessed via a link at the top of the paper.
引用
收藏
页码:675 / 675
相关论文
共 50 条
  • [21] Machine learning predicts improvement of functional outcomes in traumatic brain injury patients after inpatient rehabilitation
    Say, Irene
    Chen, Yiling Elaine
    Sun, Matthew Z.
    Li, Jingyi Jessica
    Lu, Daniel C.
    FRONTIERS IN REHABILITATION SCIENCES, 2022, 3
  • [22] MACHINE-LEARNING BASED PREDICTION OF CLINICAL OUTCOMES AFTER THROMBOLYSIS IN ISCHEMIC STROKE PATIENTS
    Wang, D.
    Zheng, L.
    INTERNATIONAL JOURNAL OF STROKE, 2020, 15 (1_SUPPL) : 431 - 431
  • [23] Predictive modelling of concrete compressive strength incorporating GGBS and alkali using a machine-learning approach
    Gogineni A.
    Panday I.K.
    Kumar P.
    Paswan R.
    Asian Journal of Civil Engineering, 2024, 25 (1) : 699 - 709
  • [24] Predicting need for hospital admission in patients with traumatic brain injury or skull fractures identified on CT imaging: a machine learning approach
    Marincowitz, Carl
    Paton, Lewis
    Lecky, Fiona
    Tiffin, Paul
    EMERGENCY MEDICINE JOURNAL, 2022, 39 (05) : 394 - 401
  • [25] Effects of time of hospital admission on outcomes after severe traumatic brain injury in Austria
    Mauritz, Walter
    Brazinova, Alexandra
    Majdan, Marek
    Rehorcikova, Veronika
    Leitgeb, Johannes
    WIENER KLINISCHE WOCHENSCHRIFT, 2014, 126 (9-10) : 278 - 285
  • [26] A Machine-Learning Approach to Measure the Anterior Cruciate Ligament Injury Risk in Female Basketball Players
    Taborri, Juri
    Molinaro, Luca
    Santospagnuolo, Adriano
    Vetrano, Mario
    Vulpiani, Maria Chiara
    Rossi, Stefano
    SENSORS, 2021, 21 (09)
  • [27] A Novel Machine-Learning Approach to Predict Recurrence After Resection of Colorectal Liver Metastases
    Anghela Z. Paredes
    J. Madison Hyer
    Diamantis I. Tsilimigras
    Amika Moro
    Fabio Bagante
    Alfredo Guglielmi
    Andrea Ruzzenente
    Sorin Alexandrescu
    Eleftherios A. Makris
    George A. Poultsides
    Kazunari Sasaki
    Federico N. Aucejo
    Timothy M. Pawlik
    Annals of Surgical Oncology, 2020, 27 : 5139 - 5147
  • [28] Risk Prediction Models for Graft Failure after Liver Transplantation: A Machine-Learning Approach
    Kwong, Allison J.
    O'Connell, Chloe
    Kanzawa, Mia
    Hufker, Katherine
    Lindsay, Neil
    Kim, W. Ray
    HEPATOLOGY, 2018, 68 : 668A - 669A
  • [29] A Novel Machine-Learning Approach to Predict Recurrence After Resection of Colorectal Liver Metastases
    Paredes, Anghela Z.
    Hyer, J. Madison
    Tsilimigras, Diamantis, I
    Moro, Amika
    Bagante, Fabio
    Guglielmi, Alfredo
    Ruzzenente, Andrea
    Alexandrescu, Sorin
    Makris, Eleftherios A.
    Poultsides, George A.
    Sasaki, Kazunari
    Aucejo, Federico N.
    Pawlik, Timothy M.
    ANNALS OF SURGICAL ONCOLOGY, 2020, 27 (13) : 5139 - 5147
  • [30] A Machine Learning Approach for the Prediction of Traumatic Brain Injury Induced Coagulopathy
    Yang, Fan
    Peng, Chi
    Peng, Liwei
    Wang, Jian
    Li, Yuejun
    Li, Weixin
    FRONTIERS IN MEDICINE, 2021, 8