State theory on bounded hyper EQ-algebras

被引:0
|
作者
Xiao Long Xin
机构
[1] Xi’an Polytechnic University,School of Science
[2] Northwest University,School of Mathematics
来源
Soft Computing | 2020年 / 24卷
关键词
Hyper EQ-algebra; Sup-Bosbach state; Sup-Riečan state; Hyper congruence; Quotient hyper EQ-algebra;
D O I
暂无
中图分类号
学科分类号
摘要
In a hyper structure (X,⋆)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,\star )$$\end{document}, x⋆y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\star y$$\end{document} is a non-empty subset of X. For a state s, s(x⋆y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s(x\star y)$$\end{document} need not be well defined. In this paper, by defining s∗(x⋆y)=sup{s(z)∣z∈x⋆y}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s^*(x\star y)=sup\{s(z)\mid z\in x\star y\}$$\end{document}, we introduce notions of sup-Bosbach states, state-morphisms and sup-Riečan states on a bounded hyper EQ-algebra and discuss the related properties. The states on bounded hyper EQ-algebras are the generalization of states on EQ-algebras. Then we discuss the relations among sup-Bosbach states, state-morphisms and sup-Riečan states on bounded hyper EQ-algebras. By giving a counter example, we show that a sup-Bosbach state may not be a sup-Riečan state on a hyper EQ-algebra. We give conditions in which each sup-Bosbach state becomes a sup-Riečan state on bounded hyper EQ-algebras. Moreover, we introduce several kinds of congruences on bounded hyper EQ-algebras, by which we construct the quotient hyper EQ-algebras. By use of the state s on a bounded hyper EQ-algebra H, we set up a state s¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{s}}$$\end{document} on the quotient hyper EQ-algebra H/θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H/\theta $$\end{document}. We also give the condition, by which a bounded hyper EQ-algebra admits a sup-Bosbach state.
引用
收藏
页码:11199 / 11211
页数:12
相关论文
共 50 条
  • [31] The spectra and reticulation of EQ-algebras
    Zhang, Xiongwei
    Yang, Jiang
    SOFT COMPUTING, 2021, 25 (13) : 8085 - 8093
  • [32] Hybrid Structures on EQ-Algebras
    Paad, Akbar
    NEW MATHEMATICS AND NATURAL COMPUTATION, 2022, 18 (02) : 365 - 383
  • [33] Prime spectrums of EQ-algebras
    Zhao, Bin
    Wang, Wei
    JOURNAL OF LOGIC AND COMPUTATION, 2023, 34 (05) : 936 - 962
  • [34] Representable good EQ-algebras
    Moataz El-Zekey
    Soft Computing, 2010, 14 : 1011 - 1023
  • [35] The spectra and reticulation of EQ-algebras
    Xiongwei Zhang
    Jiang Yang
    Soft Computing, 2021, 25 : 8085 - 8093
  • [36] Representable good EQ-algebras
    El-Zekey, Moataz
    SOFT COMPUTING, 2010, 14 (09) : 1011 - 1023
  • [37] States on pseudo EQ-algebras
    Jie Qiong Shi
    Xiao Long Xin
    Rajab Ali Borzooei
    Soft Computing, 2022, 26 : 13219 - 13231
  • [38] IMPLICATION AND PRODUCTION GRAPHS ON EQ-ALGEBRAS
    Paad, Akbar
    TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2024, 178 (02) : 275 - 290
  • [39] Finite direct products of EQ-algebras
    Jiang Yang
    Xiongwei Zhang
    Soft Computing, 2019, 23 : 7495 - 7504
  • [40] The generalized Bosbach states on EQ-algebras
    Zhang, Huarong
    Luo, Minxia
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 35 (03) : 3773 - 3782