共 50 条
State theory on bounded hyper EQ-algebras
被引:0
|作者:
Xiao Long Xin
机构:
[1] Xi’an Polytechnic University,School of Science
[2] Northwest University,School of Mathematics
来源:
关键词:
Hyper EQ-algebra;
Sup-Bosbach state;
Sup-Riečan state;
Hyper congruence;
Quotient hyper EQ-algebra;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In a hyper structure (X,⋆)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(X,\star )$$\end{document}, x⋆y\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$x\star y$$\end{document} is a non-empty subset of X. For a state s, s(x⋆y)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$s(x\star y)$$\end{document} need not be well defined. In this paper, by defining s∗(x⋆y)=sup{s(z)∣z∈x⋆y}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$s^*(x\star y)=sup\{s(z)\mid z\in x\star y\}$$\end{document}, we introduce notions of sup-Bosbach states, state-morphisms and sup-Riečan states on a bounded hyper EQ-algebra and discuss the related properties. The states on bounded hyper EQ-algebras are the generalization of states on EQ-algebras. Then we discuss the relations among sup-Bosbach states, state-morphisms and sup-Riečan states on bounded hyper EQ-algebras. By giving a counter example, we show that a sup-Bosbach state may not be a sup-Riečan state on a hyper EQ-algebra. We give conditions in which each sup-Bosbach state becomes a sup-Riečan state on bounded hyper EQ-algebras. Moreover, we introduce several kinds of congruences on bounded hyper EQ-algebras, by which we construct the quotient hyper EQ-algebras. By use of the state s on a bounded hyper EQ-algebra H, we set up a state s¯\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\bar{s}}$$\end{document} on the quotient hyper EQ-algebra H/θ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$H/\theta $$\end{document}. We also give the condition, by which a bounded hyper EQ-algebra admits a sup-Bosbach state.
引用
收藏
页码:11199 / 11211
页数:12
相关论文