State theory on bounded hyper EQ-algebras

被引:0
|
作者
Xiao Long Xin
机构
[1] Xi’an Polytechnic University,School of Science
[2] Northwest University,School of Mathematics
来源
Soft Computing | 2020年 / 24卷
关键词
Hyper EQ-algebra; Sup-Bosbach state; Sup-Riečan state; Hyper congruence; Quotient hyper EQ-algebra;
D O I
暂无
中图分类号
学科分类号
摘要
In a hyper structure (X,⋆)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,\star )$$\end{document}, x⋆y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\star y$$\end{document} is a non-empty subset of X. For a state s, s(x⋆y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s(x\star y)$$\end{document} need not be well defined. In this paper, by defining s∗(x⋆y)=sup{s(z)∣z∈x⋆y}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s^*(x\star y)=sup\{s(z)\mid z\in x\star y\}$$\end{document}, we introduce notions of sup-Bosbach states, state-morphisms and sup-Riečan states on a bounded hyper EQ-algebra and discuss the related properties. The states on bounded hyper EQ-algebras are the generalization of states on EQ-algebras. Then we discuss the relations among sup-Bosbach states, state-morphisms and sup-Riečan states on bounded hyper EQ-algebras. By giving a counter example, we show that a sup-Bosbach state may not be a sup-Riečan state on a hyper EQ-algebra. We give conditions in which each sup-Bosbach state becomes a sup-Riečan state on bounded hyper EQ-algebras. Moreover, we introduce several kinds of congruences on bounded hyper EQ-algebras, by which we construct the quotient hyper EQ-algebras. By use of the state s on a bounded hyper EQ-algebra H, we set up a state s¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{s}}$$\end{document} on the quotient hyper EQ-algebra H/θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H/\theta $$\end{document}. We also give the condition, by which a bounded hyper EQ-algebra admits a sup-Bosbach state.
引用
收藏
页码:11199 / 11211
页数:12
相关论文
共 50 条
  • [21] On good EQ-algebras
    El-Zekey, Moataz
    Novak, Vilem
    Mesiar, Radko
    FUZZY SETS AND SYSTEMS, 2011, 178 (01) : 1 - 23
  • [22] Stabilizers in EQ-algebras
    Cheng, Xiao Yun
    Wang, Mei
    Wang, Wei
    Wang, Jun Tao
    OPEN MATHEMATICS, 2019, 17 : 998 - 1013
  • [23] THE EXISTENCE OF STATES ON EQ-ALGEBRAS
    Xin, Xiao Long
    Ma, Ying Cang
    Fu, Yu Long
    MATHEMATICA SLOVACA, 2020, 70 (03) : 527 - 546
  • [24] RADICALS OF PREFILTERS IN EQ-ALGEBRAS
    Gao, Xiao Li
    Xin, Xiao Long
    Wang, Jun Tao
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2019, 20 (07) : 1443 - 1451
  • [25] Uniform topology on EQ-algebras
    Yang, Jiang
    Xin, Xiao Long
    He, Peng Fei
    OPEN MATHEMATICS, 2017, 15 : 354 - 364
  • [26] FUZZY EQ-FILTERS OF EQ-ALGEBRAS
    Ma, Zhen Ming
    Hu, Bao Qing
    QUANTITATIVE LOGIC AND SOFT COMPUTING, 2012, 5 : 528 - 535
  • [27] States on pseudo EQ-algebras
    Shi, Jie Qiong
    Xin, Xiao Long
    Borzooei, Rajab Ali
    SOFT COMPUTING, 2022, 26 (24) : 13219 - 13231
  • [28] Generalized states on EQ-algebras
    Xin, X. L.
    Khan, M.
    Jun, Y. B.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2019, 16 (01): : 159 - 172
  • [29] EQ-algebras with internal states
    Wei Wang
    Xiao Long Xin
    Jun Tao Wang
    Soft Computing, 2018, 22 : 2825 - 2841
  • [30] EQ-algebras with internal states
    Wang, Wei
    Xin, Xiao Long
    Wang, Jun Tao
    SOFT COMPUTING, 2018, 22 (09) : 2825 - 2841