Second-order LOD multigrid method for multidimensional Riesz fractional diffusion equation

被引:0
|
作者
Minghua Chen
Yantao Wang
Xiao Cheng
Weihua Deng
机构
[1] Lanzhou University,School of Mathematics and Statistics
来源
BIT Numerical Mathematics | 2014年 / 54卷
关键词
Riesz fractional diffusion equation; Second-order discretization; Toeplitz and circulant matrices; Multigrid method; 35R11; 65M06; 65M55;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a locally one dimensional (LOD) finite difference method for multidimensional Riesz fractional diffusion equation with variable coefficients on a finite domain. The numerical method is second-order convergent in both space and time directions, and its unconditional stability is strictly proved. The matrix algebraic equations of the proposed second-order schemes are almost the same as the ones of the popular first-order finite difference method for fractional operators. And the matrices involved in the schemes of different convergence orders have completely same structure and the computational count for matrix vector multiplication is O(NlogN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript{O}(N \text{ log } N)$$\end{document}; and the computational costs for solving the matrix algebraic equations of the second-order and first-order schemes are almost the same. The LOD-multigrid method is used to solve the resulting matrix algebraic equation, and the computational count is O(NlogN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript{O}(N \text{ log } N)$$\end{document} and the required storage is O(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript{O}(N)$$\end{document}, where N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document} is the number of grid points. Finally, extensive numerical experiments are performed to show the powerfulness of the second-order scheme and the LOD-multigrid method.
引用
收藏
页码:623 / 647
页数:24
相关论文
共 50 条
  • [31] An alternating direction implicit method for a second-order hyperbolic diffusion equation with convection
    Araujo, Aderito
    Neves, Cidalia
    Sousa, Ercilia
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 239 : 17 - 28
  • [32] A second-order numerical method for two-dimensional two-sided space fractional convection diffusion equation
    Chen, Minghua
    Deng, Weihua
    APPLIED MATHEMATICAL MODELLING, 2014, 38 (13) : 3244 - 3259
  • [33] A fast second-order accurate method for a two-sided space-fractional diffusion equation with variable coefficients
    Feng, L. B.
    Zhuang, P.
    Liu, F.
    Turner, I.
    Anh, V.
    Li, J.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (06) : 1155 - 1171
  • [34] A Second-Order Difference Scheme for Generalized Time-Fractional Diffusion Equation with Smooth Solutions
    Khibiev, Aslanbek
    Alikhanov, Anatoly
    Huang, Chengming
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2024, 24 (01) : 101 - 117
  • [35] Second-order asymptotics for the fast-diffusion equation
    McCann, Robert J.
    Slepcev, Dejan
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2006, 2006
  • [36] A second-order numerical method for space-time variable-order diffusion equation
    Lu, Shujuan
    Xu, Tao
    Feng, Zhaosheng
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 389 (389)
  • [37] Fourth-order numerical method for the Riesz space fractional diffusion equation with a nonlinear source term
    Mohebbi, Akbar
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2021, 9 (03): : 736 - 748
  • [38] High order multigrid method for the unsteady convection diffusion equation
    Ge, Yong-Bin
    Tian, Zhen-Fu
    Zhan, Yong
    Wu, Wen-Quan
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2005, 26 (05): : 747 - 750
  • [39] Fast second-order implicit difference schemes for time distributed-order and Riesz space fractional diffusion-wave equations
    Jian, Huan-Yan
    Huang, Ting-Zhu
    Gu, Xian-Ming
    Zhao, Xi-Le
    Zhao, Yong-Liang
    Computers and Mathematics with Applications, 2021, 94 : 136 - 154
  • [40] A FAST SECOND-ORDER FINITE DIFFERENCE METHOD FOR SPACE-FRACTIONAL DIFFUSION EQUATIONS
    Basu, Treena S.
    Wang, Hong
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2012, 9 (03) : 658 - 666