Second-order LOD multigrid method for multidimensional Riesz fractional diffusion equation

被引:0
|
作者
Minghua Chen
Yantao Wang
Xiao Cheng
Weihua Deng
机构
[1] Lanzhou University,School of Mathematics and Statistics
来源
BIT Numerical Mathematics | 2014年 / 54卷
关键词
Riesz fractional diffusion equation; Second-order discretization; Toeplitz and circulant matrices; Multigrid method; 35R11; 65M06; 65M55;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a locally one dimensional (LOD) finite difference method for multidimensional Riesz fractional diffusion equation with variable coefficients on a finite domain. The numerical method is second-order convergent in both space and time directions, and its unconditional stability is strictly proved. The matrix algebraic equations of the proposed second-order schemes are almost the same as the ones of the popular first-order finite difference method for fractional operators. And the matrices involved in the schemes of different convergence orders have completely same structure and the computational count for matrix vector multiplication is O(NlogN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript{O}(N \text{ log } N)$$\end{document}; and the computational costs for solving the matrix algebraic equations of the second-order and first-order schemes are almost the same. The LOD-multigrid method is used to solve the resulting matrix algebraic equation, and the computational count is O(NlogN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript{O}(N \text{ log } N)$$\end{document} and the required storage is O(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript{O}(N)$$\end{document}, where N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document} is the number of grid points. Finally, extensive numerical experiments are performed to show the powerfulness of the second-order scheme and the LOD-multigrid method.
引用
收藏
页码:623 / 647
页数:24
相关论文
共 50 条
  • [22] A New Numerical Method for the Riesz Space Fractional Diffusion Equation
    Ding, Heng-fei
    Zhang, Yu-xin
    He, Wan-sheng
    Yang, Xiao-ya
    ADVANCED MATERIALS RESEARCH, 2011, 213 : 393 - 396
  • [23] A second-order compact difference scheme for the fourth-order fractional sub-diffusion equation
    Zhang, Pu
    Pu, Hai
    NUMERICAL ALGORITHMS, 2017, 76 (02) : 573 - 598
  • [24] A second-order compact difference scheme for the fourth-order fractional sub-diffusion equation
    Pu Zhang
    Hai Pu
    Numerical Algorithms, 2017, 76 : 573 - 598
  • [25] A fourth-order accurate numerical method for the distributed-order Riesz space fractional diffusion equation
    Chen, Xuejuan
    Chen, Jinghua
    Liu, Fawang
    Sun, Zhi-zhong
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (02) : 1266 - 1286
  • [26] The Riesz–Bessel Fractional Diffusion Equation
    V.V. Anh
    R. McVinish
    Applied Mathematics and Optimization, 2004, 49 : 241 - 264
  • [27] Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative
    Celik, Cem
    Duman, Melda
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (04) : 1743 - 1750
  • [29] Upgrading LOD-FDTD to Efficient Method with Second-Order Accuracy
    Yang, Zaifeng
    Tan, Eng Leong
    Wang, Li-lian
    2015 ASIA-PACIFIC MICROWAVE CONFERENCE (APMC), VOLS 1-3, 2015,
  • [30] Fast Iterative Method with a Second-Order Implicit Difference Scheme for Time-Space Fractional Convection–Diffusion Equation
    Xian-Ming Gu
    Ting-Zhu Huang
    Cui-Cui Ji
    Bruno Carpentieri
    Anatoly A. Alikhanov
    Journal of Scientific Computing, 2017, 72 : 957 - 985