Second-order LOD multigrid method for multidimensional Riesz fractional diffusion equation

被引:0
|
作者
Minghua Chen
Yantao Wang
Xiao Cheng
Weihua Deng
机构
[1] Lanzhou University,School of Mathematics and Statistics
来源
BIT Numerical Mathematics | 2014年 / 54卷
关键词
Riesz fractional diffusion equation; Second-order discretization; Toeplitz and circulant matrices; Multigrid method; 35R11; 65M06; 65M55;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a locally one dimensional (LOD) finite difference method for multidimensional Riesz fractional diffusion equation with variable coefficients on a finite domain. The numerical method is second-order convergent in both space and time directions, and its unconditional stability is strictly proved. The matrix algebraic equations of the proposed second-order schemes are almost the same as the ones of the popular first-order finite difference method for fractional operators. And the matrices involved in the schemes of different convergence orders have completely same structure and the computational count for matrix vector multiplication is O(NlogN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript{O}(N \text{ log } N)$$\end{document}; and the computational costs for solving the matrix algebraic equations of the second-order and first-order schemes are almost the same. The LOD-multigrid method is used to solve the resulting matrix algebraic equation, and the computational count is O(NlogN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript{O}(N \text{ log } N)$$\end{document} and the required storage is O(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript{O}(N)$$\end{document}, where N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document} is the number of grid points. Finally, extensive numerical experiments are performed to show the powerfulness of the second-order scheme and the LOD-multigrid method.
引用
收藏
页码:623 / 647
页数:24
相关论文
共 50 条
  • [1] Second-order LOD multigrid method for multidimensional Riesz fractional diffusion equation
    Chen, Minghua
    Wang, Yantao
    Cheng, Xiao
    Deng, Weihua
    BIT NUMERICAL MATHEMATICS, 2014, 54 (03) : 623 - 647
  • [2] A second-order finite difference method for fractional diffusion equation with Dirichlet and fractional boundary conditions
    Xie, Changping
    Fang, Shaomei
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 35 (04) : 1383 - 1395
  • [3] A second-order scheme for a time-fractional diffusion equation
    Cen, Zhongdi
    Huang, Jian
    Le, Anbo
    Xu, Aimin
    APPLIED MATHEMATICS LETTERS, 2019, 90 : 79 - 85
  • [4] The Cascadic Multigrid Method of the Weak Galerkin Method for Second-Order Elliptic Equation
    Sun, Shi
    Huang, Ziping
    Wang, Cheng
    Guo, Liming
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [5] A second-order accurate numerical approximation for the fractional diffusion equation
    Tadjeran, C
    Meerschaert, MM
    Scheffler, HP
    JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 213 (01) : 205 - 213
  • [6] A second-order accurate numerical method for the two-dimensional fractional diffusion equation
    Tadjeran, Charles
    Meerschaert, Mark M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 220 (02) : 813 - 823
  • [7] A second-order numerical method for nonlinear variable-order fractional diffusion equation with time delay
    Li, Jing
    Kang, Xinyue
    Shi, Xingyun
    Song, Yufei
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 219 : 101 - 111
  • [8] Second-order BDF time approximation for Riesz space-fractional diffusion equations
    Liao, Hong-Lin
    Lyu, Pin
    Vong, Seakweng
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (01) : 144 - 158
  • [9] A fast second-order scheme for nonlinear Riesz space-fractional diffusion equations
    Zhang, Chun-Hua
    Yu, Jian-Wei
    Wang, Xiang
    NUMERICAL ALGORITHMS, 2023, 92 (03) : 1813 - 1836
  • [10] A fast second-order scheme for nonlinear Riesz space-fractional diffusion equations
    Chun-Hua Zhang
    Jian-Wei Yu
    Xiang Wang
    Numerical Algorithms, 2023, 92 : 1813 - 1836