Scanning tunneling microscopy study of the growth and self-organization of Ge nanostructures on vicinal Si(111) surfaces

被引:0
|
作者
K. N. Romanyuk
S. A. Teys
B. Z. Olshanetsky
机构
[1] Russian Academy of Sciences,Institute of Semiconductor Physics, Siberian Division
来源
关键词
61.30.Hn; 61.46.Hk; 68.37.Ef;
D O I
暂无
中图分类号
学科分类号
摘要
The initial stages of Ge growth on Si(111) vicinal surfaces tilted in the [\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overline 1 \overline 1 2$$ \end{document}] and [\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$11\overline 2 $$ \end{document}] directions were studied in situ in the temperature range 350–500°C using scanning tunneling microscopy. It was shown that, at low Ge deposition rates of 10−2 to 10−3 BL/min, ordered Ge nanowires can form on surfaces tilted in the [\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overline 1 \overline 1 2$$ \end{document}] direction under conditions of step-layered growth. The height of a nanosized Ge wire is one or three interplanar distances and is determined by the initial height of a silicon step. It was established that, during epitaxial growth, steps with a [\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$11\overline 2 $$ \end{document}] front are replaced by steps with a [\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overline 1 \overline 1 2$$ \end{document}] front. As a result, the step edge is serrated and the formation of smooth nanosized Ge wires uniform in width is hampered on the serrated Si(111) surfaces tilted in the [\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$11\overline 2 $$ \end{document}] direction.
引用
收藏
页码:1820 / 1826
页数:6
相关论文
共 50 条
  • [1] Scanning tunneling microscopy study of the growth and self-organization of Ge nanostructures on vicinal Si(111) surfaces
    Romanyuk, K. N.
    Teys, S. A.
    Olshanetsky, B. Z.
    [J]. PHYSICS OF THE SOLID STATE, 2006, 48 (09) : 1820 - 1826
  • [2] Formation of Si/Ge nanostructures at surfaces by self-organization
    Voigtländer, B
    Kawamura, M
    Paul, N
    Cherepanov, V
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (17) : S1535 - S1551
  • [3] GROWTH OF SI ON FLAT AND VICINAL SI(001) SURFACES - A SCANNING TUNNELING MICROSCOPY STUDY
    MO, YW
    KARIOTIS, R
    SWARTZENTRUBER, BS
    WEBB, MB
    LAGALLY, MG
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1990, 8 (02): : 232 - 236
  • [4] Scanning tunneling microscopy study of Au growth on Ge(001): Bulk migration, self-organization, and clustering
    Wang, J
    Li, M
    Altman, EI
    [J]. SURFACE SCIENCE, 2005, 596 (1-3) : 126 - 143
  • [5] Self-organization of In nanostructures on Si surfaces
    Xu, Maojie
    Okada, Arifumi
    Yoshida, Shoji
    Shigekawa, Hidemi
    [J]. APPLIED PHYSICS LETTERS, 2009, 94 (07)
  • [6] Scanning-tunneling-microscopy study of initial stages of Au adsorption on vicinal Si(111) surfaces
    Shibata, M
    Sumita, I
    Nakajima, M
    [J]. PHYSICAL REVIEW B, 1996, 53 (07): : 3856 - 3860
  • [7] Production of nanostructures of silicon on silicon by atomic self-organization observed by scanning tunneling microscopy
    Jones, D
    Palermo, V
    [J]. APPLIED PHYSICS LETTERS, 2002, 80 (04) : 673 - 675
  • [8] SCANNING TUNNELING MICROSCOPY OF THE (331) FACETS ON THE VICINAL SI(111) SURFACE
    TANAKA, H
    WATANABE, Y
    SUMITA, I
    [J]. APPLIED SURFACE SCIENCE, 1992, 60-1 : 474 - 478
  • [9] Scanning tunneling microscopy study of the stability of nanostructures on Si(111) at elevated temperature
    Szkutnik, PD
    Sander, D
    Dulot, F
    Kraus, A
    Jeckstiess, C
    d'Avitaya, FA
    Neddermeyer, H
    Hanbücken, M
    [J]. SURFACE SCIENCE, 2002, 507 : 615 - 618
  • [10] TUNNELING MICROSCOPY OF STEPS ON VICINAL GE(001) AND SI(001) SURFACES
    GRIFFITH, JE
    KUBBY, JA
    WIERENGA, PE
    BECKER, RS
    VICKERS, JS
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1988, 6 (02): : 493 - 496