Two operator representations for the trivariate q-polynomials and Hahn polynomials

被引:0
|
作者
Mohammed A. Abdlhusein
机构
[1] Thi-Qar University,Department of Mathematics, College of Education for Pure Sciences
来源
The Ramanujan Journal | 2016年 / 40卷
关键词
Homogeneous ; -shift operator; Cauchy companion operator; Hahn polynomials; Generating function; Mehler’s formula; Rogers formula; 05A30; 33D45;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce a trivariate q-polynomials Fn(x,y,z;q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_n(x,y,z;q)$$\end{document} as a general form of Hahn polynomials ψn(a)(x|q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi _n^{(a)}(x|q)$$\end{document} and ψn(a)(x,y|q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi _n^{(a)}(x,y|q)$$\end{document}. We represent Fn(x,y,z;q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_n(x,y,z;q)$$\end{document} by two operators: the homogeneous q-shift operator L(bθxy)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(b\theta _{xy})$$\end{document} given by Saad and Sukhi (Appl Math Comput 215:4332–4339, 2010), and the Cauchy companion operator E(a,b;θ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(a,b;\theta )$$\end{document} given by Chen (q-Difference Operator and Basic Hypergeometric Series, 2009) to derive the generating function, symmetric property, Mehler’s formula, Rogers formula, another Roger-type formula, linearization formula, and an extended Rogers formula for the trivariate q-polynomials. Then, we give the corresponding formulas for our new definitions of Hahn polynomials ψn(a)(x|q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi _n^{(a)}(x|q)$$\end{document} and ψn(a)(x,y|q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi _n^{(a)}(x,y|q)$$\end{document} by representing Hahn polynomials by the operators L(bθxy)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(b\theta _{xy})$$\end{document} and E(a,b;θ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(a,b;\theta )$$\end{document}, and by a special substitution in the trivariate q-polynomials Fn(x,y,z;q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_n(x,y,z;q)$$\end{document}.
引用
收藏
页码:491 / 509
页数:18
相关论文
共 50 条