Two operator representations for the trivariate q-polynomials and Hahn polynomials

被引:0
|
作者
Mohammed A. Abdlhusein
机构
[1] Thi-Qar University,Department of Mathematics, College of Education for Pure Sciences
来源
The Ramanujan Journal | 2016年 / 40卷
关键词
Homogeneous ; -shift operator; Cauchy companion operator; Hahn polynomials; Generating function; Mehler’s formula; Rogers formula; 05A30; 33D45;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce a trivariate q-polynomials Fn(x,y,z;q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_n(x,y,z;q)$$\end{document} as a general form of Hahn polynomials ψn(a)(x|q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi _n^{(a)}(x|q)$$\end{document} and ψn(a)(x,y|q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi _n^{(a)}(x,y|q)$$\end{document}. We represent Fn(x,y,z;q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_n(x,y,z;q)$$\end{document} by two operators: the homogeneous q-shift operator L(bθxy)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(b\theta _{xy})$$\end{document} given by Saad and Sukhi (Appl Math Comput 215:4332–4339, 2010), and the Cauchy companion operator E(a,b;θ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(a,b;\theta )$$\end{document} given by Chen (q-Difference Operator and Basic Hypergeometric Series, 2009) to derive the generating function, symmetric property, Mehler’s formula, Rogers formula, another Roger-type formula, linearization formula, and an extended Rogers formula for the trivariate q-polynomials. Then, we give the corresponding formulas for our new definitions of Hahn polynomials ψn(a)(x|q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi _n^{(a)}(x|q)$$\end{document} and ψn(a)(x,y|q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi _n^{(a)}(x,y|q)$$\end{document} by representing Hahn polynomials by the operators L(bθxy)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(b\theta _{xy})$$\end{document} and E(a,b;θ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(a,b;\theta )$$\end{document}, and by a special substitution in the trivariate q-polynomials Fn(x,y,z;q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_n(x,y,z;q)$$\end{document}.
引用
收藏
页码:491 / 509
页数:18
相关论文
共 50 条
  • [21] q-Difference equation and q-polynomials
    Fang, Jian-Ping
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 248 : 550 - 561
  • [22] Two q-Operational Equations and Hahn Polynomials
    Gu, Jing
    Yang, Dunkun
    Bao, Qi
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (03)
  • [23] The distribution of zeros of general q-polynomials
    AlvarezNodarse, R
    Buendia, E
    Dehesa, JS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (19): : 6743 - 6768
  • [24] Gandhi q-polynomials and the Denert statistic
    Han, GN
    Zeng, J
    DISCRETE MATHEMATICS, 1999, 205 (1-3) : 119 - 143
  • [25] Some identities of special q-polynomials
    Dmitry V Dolgy
    Dae San Kim
    Taekyun Kim
    Seog-Hoon Rim
    Journal of Inequalities and Applications, 2014
  • [26] Some Generating Functions for q-Polynomials
    Cohl, Howard S.
    Costas-Santos, Roberto S.
    Wakhare, Tanay V.
    SYMMETRY-BASEL, 2018, 10 (12):
  • [27] ABEL Q-POLYNOMIALS ON K BODY
    CARCANAG.J
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1967, 265 (17): : 496 - &
  • [28] Integral representations of the Wilson polynomials and the continuous dual Hahn polynomials
    Mimachi, K
    ADVANCES IN APPLIED MATHEMATICS, 1999, 23 (04) : 340 - 359
  • [29] INTEGRAL AND SERIES REPRESENTATIONS OF q-POLYNOMIALS AND FUNCTIONS: PART II SCHUR POLYNOMIALS AND THE ROGERS-RAMANUJAN IDENTITIES
    Ismail, Mourad E. H.
    Zhang, Ruiming
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (09) : 3717 - 3733
  • [30] SOME GENERALIZED SYMMETRIC Q-POLYNOMIALS
    REID, LJ
    MATHEMATISCHE NACHRICHTEN, 1971, 49 (1-6) : 149 - &