Star Coloring of Graphs with Girth at Least Five

被引:0
|
作者
M. A. Shalu
T. P. Sandhya
机构
[1] Indian Institute of Information Technology,
[2] Design and Manufacturing (IIITD&M),undefined
来源
Graphs and Combinatorics | 2016年 / 32卷
关键词
Star coloring; Independence number;
D O I
暂无
中图分类号
学科分类号
摘要
For two disjoint vertex subsets X, Y of a graph G, we denote X←Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X \leftarrow Y$$\end{document} if every vertex of Y has at most one non-neighbour in X. A k-clique star partition of a graph G is V(G)=Q1∪Q2∪…∪Qk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V(G)=Q_1\cup Q_2\cup \ldots \cup Q_k$$\end{document} such that (i) Qi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{i}$$\end{document} is a clique in G for all 1≤i≤k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le i \le k$$\end{document} and (ii) Qi←Qj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_i\leftarrow Q_j$$\end{document} for all 1≤i<j≤k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \le i < j\le k$$\end{document}. We prove that (a) every {3K1,2K2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{3K_1, 2K_2 \}$$\end{document}-free graph admits a 4ω(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\omega (G)$$\end{document}-clique star partition and (b) if G is a graph with girth at least five, then its star chromatic number χs(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _s (G)$$\end{document} satisfies χs(G)≤4α(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _s (G) \le 4 \alpha (G)$$\end{document}.
引用
收藏
页码:2121 / 2134
页数:13
相关论文
共 50 条
  • [41] (3a : a)-LIST-COLORABILITY OF EMBEDDED GRAPHS OF GIRTH AT LEAST FIVE
    Dvorak, Zdenek
    Hu, Xiaolan
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2020, 34 (04) : 2137 - 2165
  • [42] Adjacent vertex distinguishing edge colorings of planar graphs with girth at least five
    Chengchao Yan
    Danjun Huang
    Dong Chen
    Weifan Wang
    Journal of Combinatorial Optimization, 2014, 28 : 893 - 909
  • [43] Edge Coloring of Embedded Graphs with Large Girth
    Xuechao Li
    Rong Luo
    Graphs and Combinatorics, 2003, 19 : 393 - 401
  • [44] Injective coloring of planar graphs with girth 5
    Yuehua Bu
    Piaopiao Ye
    Frontiers of Mathematics in China, 2022, 17 : 473 - 484
  • [45] Linear coloring of planar graphs with large girth
    Raspaud, Andre
    Wang, Weifan
    DISCRETE MATHEMATICS, 2009, 309 (18) : 5678 - 5686
  • [46] Injective coloring of planar graphs with girth 6
    Dong, Wei
    Lin, Wensong
    DISCRETE MATHEMATICS, 2013, 313 (12) : 1302 - 1311
  • [47] INJECTIVE COLORING OF PLANAR GRAPHS WITH GIRTH 7
    Bu, Yuehua
    Lu, Kai
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2012, 4 (02)
  • [48] Equitable coloring planar graphs with large girth
    Wu, Jianliang
    Wang, Ping
    DISCRETE MATHEMATICS, 2008, 308 (5-6) : 985 - 990
  • [49] Acyclic coloring of graphs with some girth restriction
    Jiansheng Cai
    Binlu Feng
    Guiying Yan
    Journal of Combinatorial Optimization, 2016, 31 : 1399 - 1404
  • [50] Injective coloring of planar graphs with girth 5
    Bu, Yuehua
    Yang, Qiang
    Zhu, Junlei
    Zhu, Hongguo
    AIMS MATHEMATICS, 2023, 8 (07): : 17081 - 17090