Star Coloring of Graphs with Girth at Least Five

被引:0
|
作者
M. A. Shalu
T. P. Sandhya
机构
[1] Indian Institute of Information Technology,
[2] Design and Manufacturing (IIITD&M),undefined
来源
Graphs and Combinatorics | 2016年 / 32卷
关键词
Star coloring; Independence number;
D O I
暂无
中图分类号
学科分类号
摘要
For two disjoint vertex subsets X, Y of a graph G, we denote X←Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X \leftarrow Y$$\end{document} if every vertex of Y has at most one non-neighbour in X. A k-clique star partition of a graph G is V(G)=Q1∪Q2∪…∪Qk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V(G)=Q_1\cup Q_2\cup \ldots \cup Q_k$$\end{document} such that (i) Qi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{i}$$\end{document} is a clique in G for all 1≤i≤k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le i \le k$$\end{document} and (ii) Qi←Qj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_i\leftarrow Q_j$$\end{document} for all 1≤i<j≤k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \le i < j\le k$$\end{document}. We prove that (a) every {3K1,2K2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{3K_1, 2K_2 \}$$\end{document}-free graph admits a 4ω(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\omega (G)$$\end{document}-clique star partition and (b) if G is a graph with girth at least five, then its star chromatic number χs(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _s (G)$$\end{document} satisfies χs(G)≤4α(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _s (G) \le 4 \alpha (G)$$\end{document}.
引用
收藏
页码:2121 / 2134
页数:13
相关论文
共 50 条
  • [31] Coloring graphs with fixed genus and girth
    Gimbel, J
    Thomassen, C
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (11) : 4555 - 4564
  • [32] On the girth of forbidden subgraphs of coloring graphs
    Shavo, Kara Walcher
    Svensson, Elias
    Waldron, Abigail
    DISCRETE MATHEMATICS, 2024, 347 (07)
  • [33] List 2-distance (Δ + 1)-coloring of planar graphs with girth at least 7
    Ivanova A.O.
    Journal of Applied and Industrial Mathematics, 2011, 5 (02) : 221 - 230
  • [34] 2-Distance list (Δ+2)-coloring of planar graphs with girth at least 10
    La, Hoang
    Montassier, Mickael
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 44 (02) : 1356 - 1375
  • [35] Three-coloring triangle-free graphs on surfaces III. Graphs of girth five
    Dvorak, Zdenek
    Kral', Daniel
    Thomas, Robin
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2020, 145 : 376 - 432
  • [36] Online coloring graphs with high girth and high odd girth
    Nagy-Gyorgy, J.
    OPERATIONS RESEARCH LETTERS, 2010, 38 (03) : 185 - 187
  • [37] Star coloring of graphs
    Fertin, G
    Raspaud, A
    Reed, B
    JOURNAL OF GRAPH THEORY, 2004, 47 (03) : 163 - 182
  • [38] Minimum size of feedback vertex sets of planar graphs of girth at least five
    Kelly, Tom
    Liu, Chun-Hung
    EUROPEAN JOURNAL OF COMBINATORICS, 2017, 61 : 138 - 150
  • [39] Size of the largest induced forest in subcubic graphs of girth at least four and five
    Kelly, Tom
    Liu, Chun-Hung
    JOURNAL OF GRAPH THEORY, 2018, 89 (04) : 457 - 478
  • [40] Adjacent vertex distinguishing edge colorings of planar graphs with girth at least five
    Yan, Chengchao
    Huang, Danjun
    Chen, Dong
    Wang, Weifan
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 28 (04) : 893 - 909