Star Coloring of Graphs with Girth at Least Five

被引:0
|
作者
M. A. Shalu
T. P. Sandhya
机构
[1] Indian Institute of Information Technology,
[2] Design and Manufacturing (IIITD&M),undefined
来源
Graphs and Combinatorics | 2016年 / 32卷
关键词
Star coloring; Independence number;
D O I
暂无
中图分类号
学科分类号
摘要
For two disjoint vertex subsets X, Y of a graph G, we denote X←Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X \leftarrow Y$$\end{document} if every vertex of Y has at most one non-neighbour in X. A k-clique star partition of a graph G is V(G)=Q1∪Q2∪…∪Qk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V(G)=Q_1\cup Q_2\cup \ldots \cup Q_k$$\end{document} such that (i) Qi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{i}$$\end{document} is a clique in G for all 1≤i≤k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le i \le k$$\end{document} and (ii) Qi←Qj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_i\leftarrow Q_j$$\end{document} for all 1≤i<j≤k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \le i < j\le k$$\end{document}. We prove that (a) every {3K1,2K2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{3K_1, 2K_2 \}$$\end{document}-free graph admits a 4ω(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\omega (G)$$\end{document}-clique star partition and (b) if G is a graph with girth at least five, then its star chromatic number χs(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _s (G)$$\end{document} satisfies χs(G)≤4α(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _s (G) \le 4 \alpha (G)$$\end{document}.
引用
收藏
页码:2121 / 2134
页数:13
相关论文
共 50 条
  • [1] Star Coloring of Graphs with Girth at Least Five
    Shalu, M. A.
    Sandhya, T. P.
    GRAPHS AND COMBINATORICS, 2016, 32 (05) : 2121 - 2134
  • [2] An oriented coloring of planar graphs with girth at least five
    Pinlou, Alexandre
    DISCRETE MATHEMATICS, 2009, 309 (08) : 2108 - 2118
  • [3] (1, k)-Coloring of Graphs with Girth at Least Five on a Surface
    Choi, Hojin
    Choi, Ilkyoo
    Jeong, Jisu
    Suh, Geewon
    JOURNAL OF GRAPH THEORY, 2017, 84 (04) : 521 - 535
  • [4] 3-List-coloring graphs of girth at least five on surfaces
    Postle, Luke
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2021, 147 : 1 - 36
  • [5] Star coloring high girth planar graphs
    Timmons, Craig
    ELECTRONIC JOURNAL OF COMBINATORICS, 2008, 15 (01):
  • [6] On circle graphs with girth at least five
    Esperet, Louis
    Ochem, Pascal
    DISCRETE MATHEMATICS, 2009, 309 (08) : 2217 - 2222
  • [7] Adjacent vertex distinguishing edge-coloring of planar graphs with girth at least five
    Xu, Xinping
    Zhang, Yiying
    ARS COMBINATORIA, 2014, 116 : 359 - 369
  • [8] FRACTIONAL COLORING OF PLANAR GRAPHS OF GIRTH FIVE
    Dvorak, Zdenek
    Hu, Xiaolan
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2020, 34 (01) : 538 - 555
  • [9] Sparse graphs of girth at least five are packable
    Goerlich, Agnieszka
    Zak, Andrzej
    DISCRETE MATHEMATICS, 2012, 312 (24) : 3606 - 3613
  • [10] RECOLORING PLANAR GRAPHS OF GIRTH AT LEAST FIVE
    Bartier, Valentin
    Bousquet, Nicolas
    Feghali, Carl
    Heinrich, Marc
    Moore, Benjamin
    Pierron, Theo
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2023, 37 (01) : 332 - 350