Bosonization and Vertex Algebras with Defects

被引:0
|
作者
M. Mintchev
P. Sorba
机构
[1] Universitá di Pisa,INFN and Dipartimento di Fisica
[2] LAPTH,undefined
来源
Annales Henri Poincaré | 2006年 / 7卷
关键词
Vertex Operator; Massless Scalar; Vertex Algebra; Thirring Model; Chiral Component;
D O I
暂无
中图分类号
学科分类号
摘要
The method of bosonization is extended to the case when a dissipationless point-like defect is present in space-time. Introducing the chiral components of a scalar field interacting with the defect in two dimensions, we construct the associated vertex operators. The main features of the corresponding vertex algebra are established. As an application of this framework we solve the massless Thirring model with defect. We also construct the vertex representation of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widehat{sl}(2)$$\end{document} affine Lie algebra, describing the complex interplay between the left and right sectors, which is a direct consequence of the interaction with the defect. The Sugawara form of the energy-momentum tensor is also explored.
引用
收藏
页码:1375 / 1393
页数:18
相关论文
共 50 条
  • [31] N-STRING VERTEX, CANONICAL-FORMS AND BOSONIZATION
    CAROWWATAMURA, U
    WATAMURA, S
    NUCLEAR PHYSICS B, 1988, 302 (01) : 149 - 162
  • [32] Bosonization of vertex operators for the Zn-symmetric Belavin model
    Fan, H.
    Hou, B.-Y.
    Shi, K.-J.
    Yang, W.-L.
    Journal of Physics A: Mathematical and General, 30 (16):
  • [33] Four-point vertex in the Hubbard model and partial bosonization
    Friederich, S.
    Krahl, H. C.
    Wetterich, C.
    PHYSICAL REVIEW B, 2010, 81 (23)
  • [34] Cohomological Hall Algebras, Vertex Algebras and Instantons
    Rapcak, Miroslav
    Soibelman, Yan
    Yang, Yaping
    Zhao, Gufang
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 376 (03) : 1803 - 1873
  • [35] W-algebras as coset vertex algebras
    Tomoyuki Arakawa
    Thomas Creutzig
    Andrew R. Linshaw
    Inventiones mathematicae, 2019, 218 : 145 - 195
  • [36] CONFORMAL ALGEBRAS, VERTEX ALGEBRAS, AND THE LOGIC OF LOCALITY
    Smith, Jonathan D. H.
    MATHEMATICA SLOVACA, 2016, 66 (02) : 407 - 420
  • [37] W-algebras as coset vertex algebras
    Arakawa, Tomoyuki
    Creutzig, Thomas
    Linshaw, Andrew R.
    INVENTIONES MATHEMATICAE, 2019, 218 (01) : 145 - 195
  • [38] Cohomological Hall Algebras, Vertex Algebras and Instantons
    Miroslav Rapčák
    Yan Soibelman
    Yaping Yang
    Gufang Zhao
    Communications in Mathematical Physics, 2020, 376 : 1803 - 1873
  • [39] Vertex algebras and the class algebras of wreath products
    Wang, WQ
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2004, 88 : 381 - 404
  • [40] Cluster algebras based on vertex operator algebras
    Zuevsky, Alexander
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2016, 30 (28-29):