Bosonization and Vertex Algebras with Defects

被引:0
|
作者
M. Mintchev
P. Sorba
机构
[1] Universitá di Pisa,INFN and Dipartimento di Fisica
[2] LAPTH,undefined
来源
Annales Henri Poincaré | 2006年 / 7卷
关键词
Vertex Operator; Massless Scalar; Vertex Algebra; Thirring Model; Chiral Component;
D O I
暂无
中图分类号
学科分类号
摘要
The method of bosonization is extended to the case when a dissipationless point-like defect is present in space-time. Introducing the chiral components of a scalar field interacting with the defect in two dimensions, we construct the associated vertex operators. The main features of the corresponding vertex algebra are established. As an application of this framework we solve the massless Thirring model with defect. We also construct the vertex representation of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widehat{sl}(2)$$\end{document} affine Lie algebra, describing the complex interplay between the left and right sectors, which is a direct consequence of the interaction with the defect. The Sugawara form of the energy-momentum tensor is also explored.
引用
收藏
页码:1375 / 1393
页数:18
相关论文
共 50 条
  • [21] On vertex Leibniz algebras
    Li, Haisheng
    Tan, Shaobin
    Wang, Qing
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2013, 217 (12) : 2356 - 2370
  • [22] Abelianizing vertex algebras
    Li, HS
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 259 (02) : 391 - 411
  • [23] Logarithmic Vertex Algebras
    Bakalov, Bojko N.
    Villarreal, Juan J.
    TRANSFORMATION GROUPS, 2022, 29 (4) : 1295 - 1357
  • [24] Abelianizing Vertex Algebras
    Haisheng Li
    Communications in Mathematical Physics, 2005, 259 : 391 - 411
  • [25] Vertex algebras at the corner
    Gaiotto, Davide
    Rapcak, Miroslav
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (01)
  • [26] Gluing vertex algebras
    Creutzig, Thomas
    Kanade, Shashank
    McRae, Robert
    ADVANCES IN MATHEMATICS, 2022, 396
  • [27] Supersymmetric Vertex Algebras
    Reimundo Heluani
    Victor G. Kac
    Communications in Mathematical Physics, 2007, 271 : 103 - 178
  • [28] Supersymmetric vertex algebras
    Heluani, Reimundo
    Kac, Victor G.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 271 (01) : 103 - 178
  • [29] On indecomposable vertex algebras associated with vertex algebroids
    Jitjankarn, Phichet
    Yamskulna, Gaywalee
    JOURNAL OF ALGEBRA, 2020, 560 : 791 - 817
  • [30] Bosonization of vertex operators for the Z(n)-symmetric Belavin model
    Fan, H
    Hou, BY
    Shi, KJ
    Yang, WL
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (16): : 5687 - 5696