Bosonization and Vertex Algebras with Defects

被引:0
|
作者
M. Mintchev
P. Sorba
机构
[1] Universitá di Pisa,INFN and Dipartimento di Fisica
[2] LAPTH,undefined
来源
Annales Henri Poincaré | 2006年 / 7卷
关键词
Vertex Operator; Massless Scalar; Vertex Algebra; Thirring Model; Chiral Component;
D O I
暂无
中图分类号
学科分类号
摘要
The method of bosonization is extended to the case when a dissipationless point-like defect is present in space-time. Introducing the chiral components of a scalar field interacting with the defect in two dimensions, we construct the associated vertex operators. The main features of the corresponding vertex algebra are established. As an application of this framework we solve the massless Thirring model with defect. We also construct the vertex representation of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widehat{sl}(2)$$\end{document} affine Lie algebra, describing the complex interplay between the left and right sectors, which is a direct consequence of the interaction with the defect. The Sugawara form of the energy-momentum tensor is also explored.
引用
收藏
页码:1375 / 1393
页数:18
相关论文
共 50 条
  • [1] Bosonization and vertex algebras with defects
    Mintchev, M.
    Sorba, P.
    ANNALES HENRI POINCARE, 2006, 7 (7-8): : 1375 - 1393
  • [2] BOSONIZATION OF BOSONS IN VERTEX OPERATOR REPRESENTATIONS OF AFFINE KAC-MOODY ALGEBRAS
    SAKAMOTO, M
    PROGRESS OF THEORETICAL PHYSICS, 1990, 84 (02): : 351 - 359
  • [3] Vertex algebras and vertex poisson algebras
    Li, HS
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2004, 6 (01) : 61 - 110
  • [4] Modular Virasoro vertex algebras and affine vertex algebras
    Jiao, Xiangyu
    Li, Haisheng
    Mu, Qiang
    JOURNAL OF ALGEBRA, 2019, 519 : 273 - 311
  • [5] GROUP-THEORY ALGEBRAS AND BOSONIZATION
    KALNAY, AJ
    TELLOLLANOS, RA
    LECTURE NOTES IN PHYSICS, 1984, 201 : 497 - 501
  • [6] Vertex algebras and TKK algebras
    Chen, Fulin
    Ding, Lingen
    Wang, Qing
    JOURNAL OF ALGEBRA, 2024, 640 : 147 - 173
  • [7] Strongly graded vertex algebras generated by vertex Lie algebras
    Pei, Yufeng
    Yang, Jinwei
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (08)
  • [8] Deforming vertex algebras by vertex bialgebras
    Jing, Naihuan
    Kong, Fei
    Li, Haisheng
    Tan, Shaobin
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2024, 26 (01)
  • [9] OPERATOR BOSONIZATION ON RIEMANN SURFACES - NEW VERTEX OPERATORS
    SEMIKHATOV, AM
    SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR, 1989, 50 (04): : 745 - 751
  • [10] A new construction of vertex algebras and quasi-modules for vertex algebras
    Li, HS
    ADVANCES IN MATHEMATICS, 2006, 202 (01) : 232 - 286